Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnn1suc Structured version   Visualization version   GIF version

Theorem nnn1suc 40296
Description: A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.)
Assertion
Ref Expression
nnn1suc ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnn1suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3006 . . . 4 (𝑦 = 1 → (𝑦 ≠ 1 ↔ 1 ≠ 1))
2 eqeq2 2750 . . . . 5 (𝑦 = 1 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 1))
32rexbidv 3226 . . . 4 (𝑦 = 1 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 1))
41, 3imbi12d 345 . . 3 (𝑦 = 1 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)))
5 neeq1 3006 . . . 4 (𝑦 = 𝑧 → (𝑦 ≠ 1 ↔ 𝑧 ≠ 1))
6 eqeq2 2750 . . . . 5 (𝑦 = 𝑧 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝑧))
76rexbidv 3226 . . . 4 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧))
85, 7imbi12d 345 . . 3 (𝑦 = 𝑧 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧)))
9 neeq1 3006 . . . 4 (𝑦 = (𝑧 + 1) → (𝑦 ≠ 1 ↔ (𝑧 + 1) ≠ 1))
10 eqeq2 2750 . . . . 5 (𝑦 = (𝑧 + 1) → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = (𝑧 + 1)))
1110rexbidv 3226 . . . 4 (𝑦 = (𝑧 + 1) → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)))
129, 11imbi12d 345 . . 3 (𝑦 = (𝑧 + 1) → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
13 neeq1 3006 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ 1 ↔ 𝐴 ≠ 1))
14 eqeq2 2750 . . . . 5 (𝑦 = 𝐴 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝐴))
1514rexbidv 3226 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
1613, 15imbi12d 345 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)))
17 df-ne 2944 . . . 4 (1 ≠ 1 ↔ ¬ 1 = 1)
18 eqid 2738 . . . . 5 1 = 1
1918pm2.24i 150 . . . 4 (¬ 1 = 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
2017, 19sylbi 216 . . 3 (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
21 id 22 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
22 oveq1 7282 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
2322eqeq1d 2740 . . . . . 6 (𝑥 = 𝑧 → ((𝑥 + 1) = (𝑧 + 1) ↔ (𝑧 + 1) = (𝑧 + 1)))
2423adantl 482 . . . . 5 ((𝑧 ∈ ℕ ∧ 𝑥 = 𝑧) → ((𝑥 + 1) = (𝑧 + 1) ↔ (𝑧 + 1) = (𝑧 + 1)))
25 eqidd 2739 . . . . 5 (𝑧 ∈ ℕ → (𝑧 + 1) = (𝑧 + 1))
2621, 24, 25rspcedvd 3563 . . . 4 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))
27262a1d 26 . . 3 (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧) → ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
284, 8, 12, 16, 20, 27nnind 11991 . 2 (𝐴 ∈ ℕ → (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
2928imp 407 1 ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  (class class class)co 7275  1c1 10872   + caddc 10874  cn 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-1cn 10929
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator