![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnn1suc | Structured version Visualization version GIF version |
Description: A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.) |
Ref | Expression |
---|---|
nnn1suc | ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3001 | . . . 4 ⊢ (𝑦 = 1 → (𝑦 ≠ 1 ↔ 1 ≠ 1)) | |
2 | eqeq2 2747 | . . . . 5 ⊢ (𝑦 = 1 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 1)) | |
3 | 2 | rexbidv 3177 | . . . 4 ⊢ (𝑦 = 1 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)) |
4 | 1, 3 | imbi12d 344 | . . 3 ⊢ (𝑦 = 1 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1))) |
5 | neeq1 3001 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 ≠ 1 ↔ 𝑧 ≠ 1)) | |
6 | eqeq2 2747 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝑧)) | |
7 | 6 | rexbidv 3177 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧)) |
8 | 5, 7 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧))) |
9 | neeq1 3001 | . . . 4 ⊢ (𝑦 = (𝑧 + 1) → (𝑦 ≠ 1 ↔ (𝑧 + 1) ≠ 1)) | |
10 | eqeq2 2747 | . . . . 5 ⊢ (𝑦 = (𝑧 + 1) → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = (𝑧 + 1))) | |
11 | 10 | rexbidv 3177 | . . . 4 ⊢ (𝑦 = (𝑧 + 1) → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))) |
12 | 9, 11 | imbi12d 344 | . . 3 ⊢ (𝑦 = (𝑧 + 1) → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)))) |
13 | neeq1 3001 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≠ 1 ↔ 𝐴 ≠ 1)) | |
14 | eqeq2 2747 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝐴)) | |
15 | 14 | rexbidv 3177 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)) |
16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))) |
17 | df-ne 2939 | . . . 4 ⊢ (1 ≠ 1 ↔ ¬ 1 = 1) | |
18 | eqid 2735 | . . . . 5 ⊢ 1 = 1 | |
19 | 18 | pm2.24i 150 | . . . 4 ⊢ (¬ 1 = 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1) |
20 | 17, 19 | sylbi 217 | . . 3 ⊢ (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1) |
21 | id 22 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ) | |
22 | oveq1 7438 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 𝑧) → (𝑥 + 1) = (𝑧 + 1)) |
24 | 21, 23 | rspcedeq1vd 3629 | . . . 4 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)) |
25 | 24 | 2a1d 26 | . . 3 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧) → ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)))) |
26 | 4, 8, 12, 16, 20, 25 | nnind 12282 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)) |
27 | 26 | imp 406 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 (class class class)co 7431 1c1 11154 + caddc 11156 ℕcn 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |