Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnn1suc Structured version   Visualization version   GIF version

Theorem nnn1suc 42316
Description: A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.)
Assertion
Ref Expression
nnn1suc ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnn1suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 2994 . . . 4 (𝑦 = 1 → (𝑦 ≠ 1 ↔ 1 ≠ 1))
2 eqeq2 2747 . . . . 5 (𝑦 = 1 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 1))
32rexbidv 3164 . . . 4 (𝑦 = 1 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 1))
41, 3imbi12d 344 . . 3 (𝑦 = 1 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)))
5 neeq1 2994 . . . 4 (𝑦 = 𝑧 → (𝑦 ≠ 1 ↔ 𝑧 ≠ 1))
6 eqeq2 2747 . . . . 5 (𝑦 = 𝑧 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝑧))
76rexbidv 3164 . . . 4 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧))
85, 7imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧)))
9 neeq1 2994 . . . 4 (𝑦 = (𝑧 + 1) → (𝑦 ≠ 1 ↔ (𝑧 + 1) ≠ 1))
10 eqeq2 2747 . . . . 5 (𝑦 = (𝑧 + 1) → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = (𝑧 + 1)))
1110rexbidv 3164 . . . 4 (𝑦 = (𝑧 + 1) → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)))
129, 11imbi12d 344 . . 3 (𝑦 = (𝑧 + 1) → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
13 neeq1 2994 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ 1 ↔ 𝐴 ≠ 1))
14 eqeq2 2747 . . . . 5 (𝑦 = 𝐴 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝐴))
1514rexbidv 3164 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
1613, 15imbi12d 344 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)))
17 df-ne 2933 . . . 4 (1 ≠ 1 ↔ ¬ 1 = 1)
18 eqid 2735 . . . . 5 1 = 1
1918pm2.24i 150 . . . 4 (¬ 1 = 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
2017, 19sylbi 217 . . 3 (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
21 id 22 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
22 oveq1 7412 . . . . . 6 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
2322adantl 481 . . . . 5 ((𝑧 ∈ ℕ ∧ 𝑥 = 𝑧) → (𝑥 + 1) = (𝑧 + 1))
2421, 23rspcedeq1vd 3608 . . . 4 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))
25242a1d 26 . . 3 (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧) → ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
264, 8, 12, 16, 20, 25nnind 12258 . 2 (𝐴 ∈ ℕ → (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
2726imp 406 1 ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  (class class class)co 7405  1c1 11130   + caddc 11132  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-1cn 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator