Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnn1suc Structured version   Visualization version   GIF version

Theorem nnn1suc 42255
Description: A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.)
Assertion
Ref Expression
nnn1suc ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnn1suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3009 . . . 4 (𝑦 = 1 → (𝑦 ≠ 1 ↔ 1 ≠ 1))
2 eqeq2 2752 . . . . 5 (𝑦 = 1 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 1))
32rexbidv 3185 . . . 4 (𝑦 = 1 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 1))
41, 3imbi12d 344 . . 3 (𝑦 = 1 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)))
5 neeq1 3009 . . . 4 (𝑦 = 𝑧 → (𝑦 ≠ 1 ↔ 𝑧 ≠ 1))
6 eqeq2 2752 . . . . 5 (𝑦 = 𝑧 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝑧))
76rexbidv 3185 . . . 4 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧))
85, 7imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧)))
9 neeq1 3009 . . . 4 (𝑦 = (𝑧 + 1) → (𝑦 ≠ 1 ↔ (𝑧 + 1) ≠ 1))
10 eqeq2 2752 . . . . 5 (𝑦 = (𝑧 + 1) → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = (𝑧 + 1)))
1110rexbidv 3185 . . . 4 (𝑦 = (𝑧 + 1) → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1)))
129, 11imbi12d 344 . . 3 (𝑦 = (𝑧 + 1) → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
13 neeq1 3009 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ 1 ↔ 𝐴 ≠ 1))
14 eqeq2 2752 . . . . 5 (𝑦 = 𝐴 → ((𝑥 + 1) = 𝑦 ↔ (𝑥 + 1) = 𝐴))
1514rexbidv 3185 . . . 4 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦 ↔ ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
1613, 15imbi12d 344 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑦) ↔ (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)))
17 df-ne 2947 . . . 4 (1 ≠ 1 ↔ ¬ 1 = 1)
18 eqid 2740 . . . . 5 1 = 1
1918pm2.24i 150 . . . 4 (¬ 1 = 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
2017, 19sylbi 217 . . 3 (1 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 1)
21 id 22 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ)
22 oveq1 7455 . . . . . 6 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
2322adantl 481 . . . . 5 ((𝑧 ∈ ℕ ∧ 𝑥 = 𝑧) → (𝑥 + 1) = (𝑧 + 1))
2421, 23rspcedeq1vd 3642 . . . 4 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))
25242a1d 26 . . 3 (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝑧) → ((𝑧 + 1) ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = (𝑧 + 1))))
264, 8, 12, 16, 20, 25nnind 12311 . 2 (𝐴 ∈ ℕ → (𝐴 ≠ 1 → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴))
2726imp 406 1 ((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448  1c1 11185   + caddc 11187  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-1cn 11242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator