MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem4 Structured version   Visualization version   GIF version

Theorem pmtrdifellem4 19460
Description: Lemma 4 for pmtrdifel 19461. (Contributed by AV, 28-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem4 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)

Proof of Theorem pmtrdifellem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
41, 2, 3pmtrdifellem1 19457 . . 3 (𝑄𝑇𝑆𝑅)
5 eqid 2735 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
6 eqid 2735 . . . 4 dom (𝑆 ∖ I ) = dom (𝑆 ∖ I )
75, 2, 6pmtrffv 19440 . . 3 ((𝑆𝑅𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
84, 7sylan 580 . 2 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
9 eqid 2735 . . . . . . . 8 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 eqid 2735 . . . . . . . 8 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
111, 9, 10symgtrf 19450 . . . . . . 7 𝑇 ⊆ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
1211sseli 3954 . . . . . 6 (𝑄𝑇𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
139, 10symgbasf 19357 . . . . . 6 (𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
14 ffn 6706 . . . . . . 7 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → 𝑄 Fn (𝑁 ∖ {𝐾}))
15 fndifnfp 7168 . . . . . . 7 (𝑄 Fn (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
16 ssrab2 4055 . . . . . . . . . 10 {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾})
17 ssel2 3953 . . . . . . . . . . 11 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → 𝐾 ∈ (𝑁 ∖ {𝐾}))
18 eldif 3936 . . . . . . . . . . . 12 (𝐾 ∈ (𝑁 ∖ {𝐾}) ↔ (𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}))
19 elsng 4615 . . . . . . . . . . . . . . 15 (𝐾𝑁 → (𝐾 ∈ {𝐾} ↔ 𝐾 = 𝐾))
2019notbid 318 . . . . . . . . . . . . . 14 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} ↔ ¬ 𝐾 = 𝐾))
21 eqid 2735 . . . . . . . . . . . . . . 15 𝐾 = 𝐾
2221pm2.24i 150 . . . . . . . . . . . . . 14 𝐾 = 𝐾 → ¬ 𝐾𝑁)
2320, 22biimtrdi 253 . . . . . . . . . . . . 13 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} → ¬ 𝐾𝑁))
2423imp 406 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}) → ¬ 𝐾𝑁)
2518, 24sylbi 217 . . . . . . . . . . 11 (𝐾 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝐾𝑁)
2617, 25syl 17 . . . . . . . . . 10 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → ¬ 𝐾𝑁)
2716, 26mpan 690 . . . . . . . . 9 (𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → ¬ 𝐾𝑁)
2827con2i 139 . . . . . . . 8 (𝐾𝑁 → ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
29 eleq2 2823 . . . . . . . . 9 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾 ∈ dom (𝑄 ∖ I ) ↔ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3029notbid 318 . . . . . . . 8 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (¬ 𝐾 ∈ dom (𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3128, 30imbitrrid 246 . . . . . . 7 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3214, 15, 313syl 18 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3312, 13, 323syl 18 . . . . 5 (𝑄𝑇 → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3433imp 406 . . . 4 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑄 ∖ I ))
351, 2, 3pmtrdifellem2 19458 . . . . . 6 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
3635eleq2d 2820 . . . . 5 (𝑄𝑇 → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3736adantr 480 . . . 4 ((𝑄𝑇𝐾𝑁) → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3834, 37mtbird 325 . . 3 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑆 ∖ I ))
3938iffalsed 4511 . 2 ((𝑄𝑇𝐾𝑁) → if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾) = 𝐾)
408, 39eqtrd 2770 1 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  cdif 3923  wss 3926  ifcif 4500  {csn 4601   cuni 4883   I cid 5547  dom cdm 5654  ran crn 5655   Fn wfn 6526  wf 6527  cfv 6531  Basecbs 17228  SymGrpcsymg 19350  pmTrspcpmtr 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-efmnd 18847  df-symg 19351  df-pmtr 19423
This theorem is referenced by:  pmtrdifwrdel2lem1  19465
  Copyright terms: Public domain W3C validator