MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem4 Structured version   Visualization version   GIF version

Theorem pmtrdifellem4 18249
Description: Lemma 4 for pmtrdifel 18250. (Contributed by AV, 28-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem4 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)

Proof of Theorem pmtrdifellem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
41, 2, 3pmtrdifellem1 18246 . . 3 (𝑄𝑇𝑆𝑅)
5 eqid 2825 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
6 eqid 2825 . . . 4 dom (𝑆 ∖ I ) = dom (𝑆 ∖ I )
75, 2, 6pmtrffv 18229 . . 3 ((𝑆𝑅𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
84, 7sylan 577 . 2 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
9 eqid 2825 . . . . . . . 8 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 eqid 2825 . . . . . . . 8 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
111, 9, 10symgtrf 18239 . . . . . . 7 𝑇 ⊆ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
1211sseli 3823 . . . . . 6 (𝑄𝑇𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
139, 10symgbasf 18154 . . . . . 6 (𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
14 ffn 6278 . . . . . . 7 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → 𝑄 Fn (𝑁 ∖ {𝐾}))
15 fndifnfp 6694 . . . . . . 7 (𝑄 Fn (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
16 ssrab2 3912 . . . . . . . . . 10 {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾})
17 ssel2 3822 . . . . . . . . . . 11 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → 𝐾 ∈ (𝑁 ∖ {𝐾}))
18 eldif 3808 . . . . . . . . . . . 12 (𝐾 ∈ (𝑁 ∖ {𝐾}) ↔ (𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}))
19 elsng 4411 . . . . . . . . . . . . . . 15 (𝐾𝑁 → (𝐾 ∈ {𝐾} ↔ 𝐾 = 𝐾))
2019notbid 310 . . . . . . . . . . . . . 14 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} ↔ ¬ 𝐾 = 𝐾))
21 eqid 2825 . . . . . . . . . . . . . . 15 𝐾 = 𝐾
2221pm2.24i 148 . . . . . . . . . . . . . 14 𝐾 = 𝐾 → ¬ 𝐾𝑁)
2320, 22syl6bi 245 . . . . . . . . . . . . 13 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} → ¬ 𝐾𝑁))
2423imp 397 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}) → ¬ 𝐾𝑁)
2518, 24sylbi 209 . . . . . . . . . . 11 (𝐾 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝐾𝑁)
2617, 25syl 17 . . . . . . . . . 10 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → ¬ 𝐾𝑁)
2716, 26mpan 683 . . . . . . . . 9 (𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → ¬ 𝐾𝑁)
2827con2i 137 . . . . . . . 8 (𝐾𝑁 → ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
29 eleq2 2895 . . . . . . . . 9 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾 ∈ dom (𝑄 ∖ I ) ↔ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3029notbid 310 . . . . . . . 8 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (¬ 𝐾 ∈ dom (𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3128, 30syl5ibr 238 . . . . . . 7 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3214, 15, 313syl 18 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3312, 13, 323syl 18 . . . . 5 (𝑄𝑇 → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3433imp 397 . . . 4 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑄 ∖ I ))
351, 2, 3pmtrdifellem2 18247 . . . . . 6 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
3635eleq2d 2892 . . . . 5 (𝑄𝑇 → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3736adantr 474 . . . 4 ((𝑄𝑇𝐾𝑁) → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3834, 37mtbird 317 . . 3 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑆 ∖ I ))
3938iffalsed 4317 . 2 ((𝑄𝑇𝐾𝑁) → if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾) = 𝐾)
408, 39eqtrd 2861 1 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2999  {crab 3121  cdif 3795  wss 3798  ifcif 4306  {csn 4397   cuni 4658   I cid 5249  dom cdm 5342  ran crn 5343   Fn wfn 6118  wf 6119  cfv 6123  Basecbs 16222  SymGrpcsymg 18147  pmTrspcpmtr 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-tset 16324  df-symg 18148  df-pmtr 18212
This theorem is referenced by:  pmtrdifwrdel2lem1  18254
  Copyright terms: Public domain W3C validator