Step | Hyp | Ref
| Expression |
1 | | eqcom 2739 |
. . . . 5
⊢
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩}) |
2 | | opeqsng 5502 |
. . . . . 6
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩} ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶}))) |
3 | 2 | ancoms 459 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → (⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩} ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶}))) |
4 | 1, 3 | bitrid 282 |
. . . 4
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶}))) |
5 | | snopeqop.a |
. . . . . . 7
⊢ 𝐴 ∈ V |
6 | | snopeqop.b |
. . . . . . 7
⊢ 𝐵 ∈ V |
7 | 5, 6 | opeqsn 5503 |
. . . . . 6
⊢
(⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
8 | 7 | a1i 11 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
9 | 8 | anbi2d 629 |
. . . 4
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})))) |
10 | | 3anan12 1096 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
11 | 10 | bicomi 223 |
. . . . 5
⊢ ((𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) |
12 | 11 | a1i 11 |
. . . 4
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
13 | 4, 9, 12 | 3bitrd 304 |
. . 3
⊢ ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
14 | | opprc2 4897 |
. . . . . . 7
⊢ (¬
𝐷 ∈ V →
⟨𝐶, 𝐷⟩ = ∅) |
15 | 14 | eqeq2d 2743 |
. . . . . 6
⊢ (¬
𝐷 ∈ V →
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ {⟨𝐴, 𝐵⟩} = ∅)) |
16 | | opex 5463 |
. . . . . . . 8
⊢
⟨𝐴, 𝐵⟩ ∈ V |
17 | 16 | snnz 4779 |
. . . . . . 7
⊢
{⟨𝐴, 𝐵⟩} ≠
∅ |
18 | | eqneqall 2951 |
. . . . . . 7
⊢
({⟨𝐴, 𝐵⟩} = ∅ →
({⟨𝐴, 𝐵⟩} ≠ ∅ →
(𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
19 | 17, 18 | mpi 20 |
. . . . . 6
⊢
({⟨𝐴, 𝐵⟩} = ∅ → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) |
20 | 15, 19 | syl6bi 252 |
. . . . 5
⊢ (¬
𝐷 ∈ V →
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
21 | 20 | adantr 481 |
. . . 4
⊢ ((¬
𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
22 | | eleq1 2821 |
. . . . . . . . . 10
⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) |
23 | 22 | notbid 317 |
. . . . . . . . 9
⊢ (𝐷 = 𝐶 → (¬ 𝐷 ∈ V ↔ ¬ 𝐶 ∈ V)) |
24 | 23 | eqcoms 2740 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → (¬ 𝐷 ∈ V ↔ ¬ 𝐶 ∈ V)) |
25 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
𝐶 ∈ V → (𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
26 | 24, 25 | syl6bi 252 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → (¬ 𝐷 ∈ V → (𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))) |
27 | 26 | impd 411 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
28 | 27 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) → ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
29 | 28 | com12 32 |
. . . 4
⊢ ((¬
𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
30 | 21, 29 | impbid 211 |
. . 3
⊢ ((¬
𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
31 | 13, 30 | pm2.61ian 810 |
. 2
⊢ (𝐶 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
32 | | opprc1 4896 |
. . . . 5
⊢ (¬
𝐶 ∈ V →
⟨𝐶, 𝐷⟩ = ∅) |
33 | 32 | eqeq2d 2743 |
. . . 4
⊢ (¬
𝐶 ∈ V →
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ {⟨𝐴, 𝐵⟩} = ∅)) |
34 | 33, 19 | syl6bi 252 |
. . 3
⊢ (¬
𝐶 ∈ V →
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
35 | | eleq1 2821 |
. . . . . . 7
⊢ (𝐶 = {𝐴} → (𝐶 ∈ V ↔ {𝐴} ∈ V)) |
36 | 35 | notbid 317 |
. . . . . 6
⊢ (𝐶 = {𝐴} → (¬ 𝐶 ∈ V ↔ ¬ {𝐴} ∈ V)) |
37 | | snex 5430 |
. . . . . . 7
⊢ {𝐴} ∈ V |
38 | 37 | pm2.24i 150 |
. . . . . 6
⊢ (¬
{𝐴} ∈ V →
{⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩) |
39 | 36, 38 | syl6bi 252 |
. . . . 5
⊢ (𝐶 = {𝐴} → (¬ 𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
40 | 39 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) → (¬ 𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
41 | 40 | com12 32 |
. . 3
⊢ (¬
𝐶 ∈ V → ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)) |
42 | 34, 41 | impbid 211 |
. 2
⊢ (¬
𝐶 ∈ V →
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}))) |
43 | 31, 42 | pm2.61i 182 |
1
⊢
({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) |