MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopeqop Structured version   Visualization version   GIF version

Theorem snopeqop 5525
Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
snopeqop.a 𝐴 ∈ V
snopeqop.b 𝐵 ∈ V
Assertion
Ref Expression
snopeqop ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}))

Proof of Theorem snopeqop
StepHypRef Expression
1 eqcom 2747 . . . . 5 ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩})
2 opeqsng 5522 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩} ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶})))
32ancoms 458 . . . . 5 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → (⟨𝐶, 𝐷⟩ = {⟨𝐴, 𝐵⟩} ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶})))
41, 3bitrid 283 . . . 4 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶})))
5 snopeqop.a . . . . . . 7 𝐴 ∈ V
6 snopeqop.b . . . . . . 7 𝐵 ∈ V
75, 6opeqsn 5523 . . . . . 6 (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
87a1i 11 . . . . 5 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴})))
98anbi2d 629 . . . 4 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐶 = 𝐷 ∧ ⟨𝐴, 𝐵⟩ = {𝐶}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵𝐶 = {𝐴}))))
10 3anan12 1096 . . . . . 6 ((𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵𝐶 = {𝐴})))
1110bicomi 224 . . . . 5 ((𝐶 = 𝐷 ∧ (𝐴 = 𝐵𝐶 = {𝐴})) ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}))
1211a1i 11 . . . 4 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐶 = 𝐷 ∧ (𝐴 = 𝐵𝐶 = {𝐴})) ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
134, 9, 123bitrd 305 . . 3 ((𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
14 opprc2 4922 . . . . . . 7 𝐷 ∈ V → ⟨𝐶, 𝐷⟩ = ∅)
1514eqeq2d 2751 . . . . . 6 𝐷 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ {⟨𝐴, 𝐵⟩} = ∅))
16 opex 5484 . . . . . . . 8 𝐴, 𝐵⟩ ∈ V
1716snnz 4801 . . . . . . 7 {⟨𝐴, 𝐵⟩} ≠ ∅
18 eqneqall 2957 . . . . . . 7 ({⟨𝐴, 𝐵⟩} = ∅ → ({⟨𝐴, 𝐵⟩} ≠ ∅ → (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
1917, 18mpi 20 . . . . . 6 ({⟨𝐴, 𝐵⟩} = ∅ → (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}))
2015, 19biimtrdi 253 . . . . 5 𝐷 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
2120adantr 480 . . . 4 ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
22 eleq1 2832 . . . . . . . . . 10 (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V))
2322notbid 318 . . . . . . . . 9 (𝐷 = 𝐶 → (¬ 𝐷 ∈ V ↔ ¬ 𝐶 ∈ V))
2423eqcoms 2748 . . . . . . . 8 (𝐶 = 𝐷 → (¬ 𝐷 ∈ V ↔ ¬ 𝐶 ∈ V))
25 pm2.21 123 . . . . . . . 8 𝐶 ∈ V → (𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
2624, 25biimtrdi 253 . . . . . . 7 (𝐶 = 𝐷 → (¬ 𝐷 ∈ V → (𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)))
2726impd 410 . . . . . 6 (𝐶 = 𝐷 → ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
28273ad2ant2 1134 . . . . 5 ((𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}) → ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
2928com12 32 . . . 4 ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → ((𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
3021, 29impbid 212 . . 3 ((¬ 𝐷 ∈ V ∧ 𝐶 ∈ V) → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
3113, 30pm2.61ian 811 . 2 (𝐶 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
32 opprc1 4921 . . . . 5 𝐶 ∈ V → ⟨𝐶, 𝐷⟩ = ∅)
3332eqeq2d 2751 . . . 4 𝐶 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ {⟨𝐴, 𝐵⟩} = ∅))
3433, 19biimtrdi 253 . . 3 𝐶 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
35 eleq1 2832 . . . . . . 7 (𝐶 = {𝐴} → (𝐶 ∈ V ↔ {𝐴} ∈ V))
3635notbid 318 . . . . . 6 (𝐶 = {𝐴} → (¬ 𝐶 ∈ V ↔ ¬ {𝐴} ∈ V))
37 snex 5451 . . . . . . 7 {𝐴} ∈ V
3837pm2.24i 150 . . . . . 6 (¬ {𝐴} ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩)
3936, 38biimtrdi 253 . . . . 5 (𝐶 = {𝐴} → (¬ 𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
40393ad2ant3 1135 . . . 4 ((𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}) → (¬ 𝐶 ∈ V → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
4140com12 32 . . 3 𝐶 ∈ V → ((𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}) → {⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩))
4234, 41impbid 212 . 2 𝐶 ∈ V → ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴})))
4331, 42pm2.61i 182 1 ({⟨𝐴, 𝐵⟩} = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐵𝐶 = 𝐷𝐶 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  {csn 4648  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  snopeqopsnid  5528  funopsn  7182
  Copyright terms: Public domain W3C validator