| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2irrexpq | Structured version Visualization version GIF version | ||
| Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16155), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26735. (Contributed by AV, 23-Dec-2022.) |
| Ref | Expression |
|---|---|
| 2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 2 | 1 | eleq1d 2816 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
| 3 | oveq2 7354 | . . . 4 ⊢ (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2))) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) |
| 5 | 2, 4 | rspc2ev 3590 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
| 6 | 3ianor 1106 | . . . 4 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) | |
| 7 | sqrt2irr0 16157 | . . . . . 6 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
| 8 | 7 | pm2.24i 150 | . . . . 5 ⊢ (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
| 9 | 2rp 12892 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
| 10 | rpsqrtcl 15168 | . . . . . . . . . 10 ⊢ (2 ∈ ℝ+ → (√‘2) ∈ ℝ+) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ+ |
| 12 | rpre 12896 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ) | |
| 13 | rpge0 12901 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2)) | |
| 14 | 12, 13, 12 | recxpcld 26657 | . . . . . . . . 9 ⊢ ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
| 15 | 11, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐(√‘2)) ∈ ℝ |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
| 17 | id 22 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) | |
| 18 | 16, 17 | eldifd 3913 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ)) |
| 19 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ)) |
| 20 | sqrt2re 16156 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ | |
| 21 | 20 | recni 11123 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℂ |
| 22 | cxpmul 26622 | . . . . . . . . 9 ⊢ (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
| 23 | 11, 20, 21, 22 | mp3an 1463 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) |
| 24 | 2re 12196 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 25 | 0le2 12224 | . . . . . . . . . . 11 ⊢ 0 ≤ 2 | |
| 26 | remsqsqrt 15160 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2) | |
| 27 | 24, 25, 26 | mp2an 692 | . . . . . . . . . 10 ⊢ ((√‘2) · (√‘2)) = 2 |
| 28 | 27 | oveq2i 7357 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2) |
| 29 | 2cn 12197 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 30 | cxpsqrtth 26664 | . . . . . . . . . . 11 ⊢ (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2) | |
| 31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ((√‘2)↑𝑐2) = 2 |
| 32 | 2z 12501 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 33 | zq 12849 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ 2 ∈ ℚ |
| 35 | 31, 34 | eqeltri 2827 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐2) ∈ ℚ |
| 36 | 28, 35 | eqeltri 2827 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ |
| 37 | 23, 36 | eqeltrri 2828 | . . . . . . 7 ⊢ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ |
| 38 | 37 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) |
| 39 | 18, 19, 38 | 3jca 1128 | . . . . 5 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
| 40 | 8, 8, 39 | 3jaoi 1430 | . . . 4 ⊢ ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
| 41 | 6, 40 | sylbi 217 | . . 3 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
| 42 | oveq1 7353 | . . . . 5 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏)) | |
| 43 | 42 | eleq1d 2816 | . . . 4 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ)) |
| 44 | oveq2 7354 | . . . . 5 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
| 45 | 44 | eleq1d 2816 | . . . 4 ⊢ (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
| 46 | 43, 45 | rspc2ev 3590 | . . 3 ⊢ ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
| 47 | 41, 46 | syl 17 | . 2 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
| 48 | 5, 47 | pm2.61i 182 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3899 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 · cmul 11008 ≤ cle 11144 2c2 12177 ℤcz 12465 ℚcq 12843 ℝ+crp 12887 √csqrt 15137 ↑𝑐ccxp 26489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 df-cxp 26491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |