MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2irrexpq Structured version   Visualization version   GIF version

Theorem 2irrexpq 25321
Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 15594), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 25386. (Contributed by AV, 23-Dec-2022.)
Assertion
Ref Expression
2irrexpq 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Distinct variable group:   𝑎,𝑏

Proof of Theorem 2irrexpq
StepHypRef Expression
1 oveq1 7142 . . . 4 (𝑎 = (√‘2) → (𝑎𝑐𝑏) = ((√‘2)↑𝑐𝑏))
21eleq1d 2874 . . 3 (𝑎 = (√‘2) → ((𝑎𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ))
3 oveq2 7143 . . . 4 (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2)))
43eleq1d 2874 . . 3 (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ))
52, 4rspc2ev 3583 . 2 (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
6 3ianor 1104 . . . 4 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ))
7 sqrt2irr0 15596 . . . . . 6 (√‘2) ∈ (ℝ ∖ ℚ)
87pm2.24i 153 . . . . 5 (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
9 2rp 12382 . . . . . . . . . 10 2 ∈ ℝ+
10 rpsqrtcl 14616 . . . . . . . . . 10 (2 ∈ ℝ+ → (√‘2) ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . 9 (√‘2) ∈ ℝ+
12 rpre 12385 . . . . . . . . . 10 ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ)
13 rpge0 12390 . . . . . . . . . 10 ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2))
1412, 13, 12recxpcld 25314 . . . . . . . . 9 ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ)
1511, 14ax-mp 5 . . . . . . . 8 ((√‘2)↑𝑐(√‘2)) ∈ ℝ
1615a1i 11 . . . . . . 7 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ)
17 id 22 . . . . . . 7 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)
1816, 17eldifd 3892 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ))
197a1i 11 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ))
20 sqrt2re 15595 . . . . . . . . 9 (√‘2) ∈ ℝ
2120recni 10644 . . . . . . . . 9 (√‘2) ∈ ℂ
22 cxpmul 25279 . . . . . . . . 9 (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)))
2311, 20, 21, 22mp3an 1458 . . . . . . . 8 ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))
24 2re 11699 . . . . . . . . . . 11 2 ∈ ℝ
25 0le2 11727 . . . . . . . . . . 11 0 ≤ 2
26 remsqsqrt 14608 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
2724, 25, 26mp2an 691 . . . . . . . . . 10 ((√‘2) · (√‘2)) = 2
2827oveq2i 7146 . . . . . . . . 9 ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2)
29 2cn 11700 . . . . . . . . . . 11 2 ∈ ℂ
30 cxpsqrtth 25320 . . . . . . . . . . 11 (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2)
3129, 30ax-mp 5 . . . . . . . . . 10 ((√‘2)↑𝑐2) = 2
32 2z 12002 . . . . . . . . . . 11 2 ∈ ℤ
33 zq 12342 . . . . . . . . . . 11 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33ax-mp 5 . . . . . . . . . 10 2 ∈ ℚ
3531, 34eqeltri 2886 . . . . . . . . 9 ((√‘2)↑𝑐2) ∈ ℚ
3628, 35eqeltri 2886 . . . . . . . 8 ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ
3723, 36eqeltrri 2887 . . . . . . 7 (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ
3837a1i 11 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)
3918, 19, 383jca 1125 . . . . 5 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
408, 8, 393jaoi 1424 . . . 4 ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
416, 40sylbi 220 . . 3 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
42 oveq1 7142 . . . . 5 (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏))
4342eleq1d 2874 . . . 4 (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ))
44 oveq2 7143 . . . . 5 (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)))
4544eleq1d 2874 . . . 4 (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
4643, 45rspc2ev 3583 . . 3 ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
4741, 46syl 17 . 2 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
485, 47pm2.61i 185 1 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cdif 3878   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   · cmul 10531  cle 10665  2c2 11680  cz 11969  cq 12336  +crp 12377  csqrt 14584  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator