MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2irrexpq Structured version   Visualization version   GIF version

Theorem 2irrexpq 26656
Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16176), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26726. (Contributed by AV, 23-Dec-2022.)
Assertion
Ref Expression
2irrexpq 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Distinct variable group:   𝑎,𝑏

Proof of Theorem 2irrexpq
StepHypRef Expression
1 oveq1 7360 . . . 4 (𝑎 = (√‘2) → (𝑎𝑐𝑏) = ((√‘2)↑𝑐𝑏))
21eleq1d 2813 . . 3 (𝑎 = (√‘2) → ((𝑎𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ))
3 oveq2 7361 . . . 4 (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2)))
43eleq1d 2813 . . 3 (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ))
52, 4rspc2ev 3592 . 2 (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
6 3ianor 1106 . . . 4 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ))
7 sqrt2irr0 16178 . . . . . 6 (√‘2) ∈ (ℝ ∖ ℚ)
87pm2.24i 150 . . . . 5 (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
9 2rp 12916 . . . . . . . . . 10 2 ∈ ℝ+
10 rpsqrtcl 15189 . . . . . . . . . 10 (2 ∈ ℝ+ → (√‘2) ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . 9 (√‘2) ∈ ℝ+
12 rpre 12920 . . . . . . . . . 10 ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ)
13 rpge0 12925 . . . . . . . . . 10 ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2))
1412, 13, 12recxpcld 26648 . . . . . . . . 9 ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ)
1511, 14ax-mp 5 . . . . . . . 8 ((√‘2)↑𝑐(√‘2)) ∈ ℝ
1615a1i 11 . . . . . . 7 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ)
17 id 22 . . . . . . 7 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)
1816, 17eldifd 3916 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ))
197a1i 11 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ))
20 sqrt2re 16177 . . . . . . . . 9 (√‘2) ∈ ℝ
2120recni 11148 . . . . . . . . 9 (√‘2) ∈ ℂ
22 cxpmul 26613 . . . . . . . . 9 (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)))
2311, 20, 21, 22mp3an 1463 . . . . . . . 8 ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))
24 2re 12220 . . . . . . . . . . 11 2 ∈ ℝ
25 0le2 12248 . . . . . . . . . . 11 0 ≤ 2
26 remsqsqrt 15181 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
2724, 25, 26mp2an 692 . . . . . . . . . 10 ((√‘2) · (√‘2)) = 2
2827oveq2i 7364 . . . . . . . . 9 ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2)
29 2cn 12221 . . . . . . . . . . 11 2 ∈ ℂ
30 cxpsqrtth 26655 . . . . . . . . . . 11 (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2)
3129, 30ax-mp 5 . . . . . . . . . 10 ((√‘2)↑𝑐2) = 2
32 2z 12525 . . . . . . . . . . 11 2 ∈ ℤ
33 zq 12873 . . . . . . . . . . 11 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33ax-mp 5 . . . . . . . . . 10 2 ∈ ℚ
3531, 34eqeltri 2824 . . . . . . . . 9 ((√‘2)↑𝑐2) ∈ ℚ
3628, 35eqeltri 2824 . . . . . . . 8 ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ
3723, 36eqeltrri 2825 . . . . . . 7 (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ
3837a1i 11 . . . . . 6 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)
3918, 19, 383jca 1128 . . . . 5 (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
408, 8, 393jaoi 1430 . . . 4 ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
416, 40sylbi 217 . . 3 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
42 oveq1 7360 . . . . 5 (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏))
4342eleq1d 2813 . . . 4 (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ))
44 oveq2 7361 . . . . 5 (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)))
4544eleq1d 2813 . . . 4 (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ))
4643, 45rspc2ev 3592 . . 3 ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
4741, 46syl 17 . 2 (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
485, 47pm2.61i 182 1 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cdif 3902   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   · cmul 11033  cle 11169  2c2 12201  cz 12489  cq 12867  +crp 12911  csqrt 15158  𝑐ccxp 26480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator