![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2irrexpq | Structured version Visualization version GIF version |
Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16297), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26861. (Contributed by AV, 23-Dec-2022.) |
Ref | Expression |
---|---|
2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
2 | 1 | eleq1d 2829 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
3 | oveq2 7456 | . . . 4 ⊢ (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2))) | |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) |
5 | 2, 4 | rspc2ev 3648 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
6 | 3ianor 1107 | . . . 4 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) | |
7 | sqrt2irr0 16299 | . . . . . 6 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
8 | 7 | pm2.24i 150 | . . . . 5 ⊢ (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
9 | 2rp 13062 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
10 | rpsqrtcl 15313 | . . . . . . . . . 10 ⊢ (2 ∈ ℝ+ → (√‘2) ∈ ℝ+) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ+ |
12 | rpre 13065 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ) | |
13 | rpge0 13070 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2)) | |
14 | 12, 13, 12 | recxpcld 26783 | . . . . . . . . 9 ⊢ ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
15 | 11, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐(√‘2)) ∈ ℝ |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
17 | id 22 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) | |
18 | 16, 17 | eldifd 3987 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ)) |
19 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ)) |
20 | sqrt2re 16298 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ | |
21 | 20 | recni 11304 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℂ |
22 | cxpmul 26748 | . . . . . . . . 9 ⊢ (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
23 | 11, 20, 21, 22 | mp3an 1461 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) |
24 | 2re 12367 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
25 | 0le2 12395 | . . . . . . . . . . 11 ⊢ 0 ≤ 2 | |
26 | remsqsqrt 15305 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2) | |
27 | 24, 25, 26 | mp2an 691 | . . . . . . . . . 10 ⊢ ((√‘2) · (√‘2)) = 2 |
28 | 27 | oveq2i 7459 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2) |
29 | 2cn 12368 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
30 | cxpsqrtth 26790 | . . . . . . . . . . 11 ⊢ (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2) | |
31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ((√‘2)↑𝑐2) = 2 |
32 | 2z 12675 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
33 | zq 13019 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ 2 ∈ ℚ |
35 | 31, 34 | eqeltri 2840 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐2) ∈ ℚ |
36 | 28, 35 | eqeltri 2840 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ |
37 | 23, 36 | eqeltrri 2841 | . . . . . . 7 ⊢ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ |
38 | 37 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) |
39 | 18, 19, 38 | 3jca 1128 | . . . . 5 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
40 | 8, 8, 39 | 3jaoi 1428 | . . . 4 ⊢ ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
41 | 6, 40 | sylbi 217 | . . 3 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
42 | oveq1 7455 | . . . . 5 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏)) | |
43 | 42 | eleq1d 2829 | . . . 4 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ)) |
44 | oveq2 7456 | . . . . 5 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
45 | 44 | eleq1d 2829 | . . . 4 ⊢ (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
46 | 43, 45 | rspc2ev 3648 | . . 3 ⊢ ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
47 | 41, 46 | syl 17 | . 2 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
48 | 5, 47 | pm2.61i 182 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ w3o 1086 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 · cmul 11189 ≤ cle 11325 2c2 12348 ℤcz 12639 ℚcq 13013 ℝ+crp 13057 √csqrt 15282 ↑𝑐ccxp 26615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-cxp 26617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |