Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2irrexpq | Structured version Visualization version GIF version |
Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 15956), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 25948. (Contributed by AV, 23-Dec-2022.) |
Ref | Expression |
---|---|
2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7278 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
2 | 1 | eleq1d 2825 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
3 | oveq2 7279 | . . . 4 ⊢ (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2))) | |
4 | 3 | eleq1d 2825 | . . 3 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) |
5 | 2, 4 | rspc2ev 3573 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
6 | 3ianor 1106 | . . . 4 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) | |
7 | sqrt2irr0 15958 | . . . . . 6 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
8 | 7 | pm2.24i 150 | . . . . 5 ⊢ (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
9 | 2rp 12734 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
10 | rpsqrtcl 14974 | . . . . . . . . . 10 ⊢ (2 ∈ ℝ+ → (√‘2) ∈ ℝ+) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ+ |
12 | rpre 12737 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ) | |
13 | rpge0 12742 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2)) | |
14 | 12, 13, 12 | recxpcld 25876 | . . . . . . . . 9 ⊢ ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
15 | 11, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐(√‘2)) ∈ ℝ |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) |
17 | id 22 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) | |
18 | 16, 17 | eldifd 3903 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ)) |
19 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ)) |
20 | sqrt2re 15957 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ | |
21 | 20 | recni 10990 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℂ |
22 | cxpmul 25841 | . . . . . . . . 9 ⊢ (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
23 | 11, 20, 21, 22 | mp3an 1460 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) |
24 | 2re 12047 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
25 | 0le2 12075 | . . . . . . . . . . 11 ⊢ 0 ≤ 2 | |
26 | remsqsqrt 14966 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2) | |
27 | 24, 25, 26 | mp2an 689 | . . . . . . . . . 10 ⊢ ((√‘2) · (√‘2)) = 2 |
28 | 27 | oveq2i 7282 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2) |
29 | 2cn 12048 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
30 | cxpsqrtth 25882 | . . . . . . . . . . 11 ⊢ (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2) | |
31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ((√‘2)↑𝑐2) = 2 |
32 | 2z 12352 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
33 | zq 12693 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ 2 ∈ ℚ |
35 | 31, 34 | eqeltri 2837 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐2) ∈ ℚ |
36 | 28, 35 | eqeltri 2837 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ |
37 | 23, 36 | eqeltrri 2838 | . . . . . . 7 ⊢ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ |
38 | 37 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) |
39 | 18, 19, 38 | 3jca 1127 | . . . . 5 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
40 | 8, 8, 39 | 3jaoi 1426 | . . . 4 ⊢ ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
41 | 6, 40 | sylbi 216 | . . 3 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
42 | oveq1 7278 | . . . . 5 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏)) | |
43 | 42 | eleq1d 2825 | . . . 4 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ)) |
44 | oveq2 7279 | . . . . 5 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
45 | 44 | eleq1d 2825 | . . . 4 ⊢ (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) |
46 | 43, 45 | rspc2ev 3573 | . . 3 ⊢ ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
47 | 41, 46 | syl 17 | . 2 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
48 | 5, 47 | pm2.61i 182 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ w3o 1085 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ∖ cdif 3889 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 · cmul 10877 ≤ cle 11011 2c2 12028 ℤcz 12319 ℚcq 12687 ℝ+crp 12729 √csqrt 14942 ↑𝑐ccxp 25709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ioc 13083 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 df-sin 15777 df-cos 15778 df-pi 15780 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-lp 22285 df-perf 22286 df-cn 22376 df-cnp 22377 df-haus 22464 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-xms 23471 df-ms 23472 df-tms 23473 df-cncf 24039 df-limc 25028 df-dv 25029 df-log 25710 df-cxp 25711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |