|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2irrexpq | Structured version Visualization version GIF version | ||
| Description: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16285), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26843. (Contributed by AV, 23-Dec-2022.) | 
| Ref | Expression | 
|---|---|
| 2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 7438 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 2 | 1 | eleq1d 2826 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) | 
| 3 | oveq2 7439 | . . . 4 ⊢ (𝑏 = (√‘2) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(√‘2))) | |
| 4 | 3 | eleq1d 2826 | . . 3 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) | 
| 5 | 2, 4 | rspc2ev 3635 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) | 
| 6 | 3ianor 1107 | . . . 4 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) ↔ (¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ)) | |
| 7 | sqrt2irr0 16287 | . . . . . 6 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
| 8 | 7 | pm2.24i 150 | . . . . 5 ⊢ (¬ (√‘2) ∈ (ℝ ∖ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) | 
| 9 | 2rp 13039 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
| 10 | rpsqrtcl 15303 | . . . . . . . . . 10 ⊢ (2 ∈ ℝ+ → (√‘2) ∈ ℝ+) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ+ | 
| 12 | rpre 13043 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → (√‘2) ∈ ℝ) | |
| 13 | rpge0 13048 | . . . . . . . . . 10 ⊢ ((√‘2) ∈ ℝ+ → 0 ≤ (√‘2)) | |
| 14 | 12, 13, 12 | recxpcld 26765 | . . . . . . . . 9 ⊢ ((√‘2) ∈ ℝ+ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) | 
| 15 | 11, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐(√‘2)) ∈ ℝ | 
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ ℝ) | 
| 17 | id 22 | . . . . . . 7 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) | |
| 18 | 16, 17 | eldifd 3962 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → ((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ)) | 
| 19 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (√‘2) ∈ (ℝ ∖ ℚ)) | 
| 20 | sqrt2re 16286 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℝ | |
| 21 | 20 | recni 11275 | . . . . . . . . 9 ⊢ (√‘2) ∈ ℂ | 
| 22 | cxpmul 26730 | . . . . . . . . 9 ⊢ (((√‘2) ∈ ℝ+ ∧ (√‘2) ∈ ℝ ∧ (√‘2) ∈ ℂ) → ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
| 23 | 11, 20, 21, 22 | mp3an 1463 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) | 
| 24 | 2re 12340 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 25 | 0le2 12368 | . . . . . . . . . . 11 ⊢ 0 ≤ 2 | |
| 26 | remsqsqrt 15295 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2) | |
| 27 | 24, 25, 26 | mp2an 692 | . . . . . . . . . 10 ⊢ ((√‘2) · (√‘2)) = 2 | 
| 28 | 27 | oveq2i 7442 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) = ((√‘2)↑𝑐2) | 
| 29 | 2cn 12341 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 30 | cxpsqrtth 26772 | . . . . . . . . . . 11 ⊢ (2 ∈ ℂ → ((√‘2)↑𝑐2) = 2) | |
| 31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ((√‘2)↑𝑐2) = 2 | 
| 32 | 2z 12649 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 33 | zq 12996 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ 2 ∈ ℚ | 
| 35 | 31, 34 | eqeltri 2837 | . . . . . . . . 9 ⊢ ((√‘2)↑𝑐2) ∈ ℚ | 
| 36 | 28, 35 | eqeltri 2837 | . . . . . . . 8 ⊢ ((√‘2)↑𝑐((√‘2) · (√‘2))) ∈ ℚ | 
| 37 | 23, 36 | eqeltrri 2838 | . . . . . . 7 ⊢ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ | 
| 38 | 37 | a1i 11 | . . . . . 6 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) | 
| 39 | 18, 19, 38 | 3jca 1129 | . . . . 5 ⊢ (¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) | 
| 40 | 8, 8, 39 | 3jaoi 1430 | . . . 4 ⊢ ((¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ (√‘2) ∈ (ℝ ∖ ℚ) ∨ ¬ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) | 
| 41 | 6, 40 | sylbi 217 | . . 3 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → (((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) | 
| 42 | oveq1 7438 | . . . . 5 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → (𝑎↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐𝑏)) | |
| 43 | 42 | eleq1d 2826 | . . . 4 ⊢ (𝑎 = ((√‘2)↑𝑐(√‘2)) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ)) | 
| 44 | oveq2 7439 | . . . . 5 ⊢ (𝑏 = (√‘2) → (((√‘2)↑𝑐(√‘2))↑𝑐𝑏) = (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2))) | |
| 45 | 44 | eleq1d 2826 | . . . 4 ⊢ (𝑏 = (√‘2) → ((((√‘2)↑𝑐(√‘2))↑𝑐𝑏) ∈ ℚ ↔ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ)) | 
| 46 | 43, 45 | rspc2ev 3635 | . . 3 ⊢ ((((√‘2)↑𝑐(√‘2)) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) | 
| 47 | 41, 46 | syl 17 | . 2 ⊢ (¬ ((√‘2) ∈ (ℝ ∖ ℚ) ∧ (√‘2) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(√‘2)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) | 
| 48 | 5, 47 | pm2.61i 182 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∨ w3o 1086 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∖ cdif 3948 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 ≤ cle 11296 2c2 12321 ℤcz 12613 ℚcq 12990 ℝ+crp 13034 √csqrt 15272 ↑𝑐ccxp 26597 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 df-log 26598 df-cxp 26599 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |