| Step | Hyp | Ref
| Expression |
| 1 | | df-reu 3365 |
. . 3
⊢
(∃!𝑥 ∈
{𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)) |
| 2 | | eleq1w 2818 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑦 ∈ {𝐴, 𝐵, 𝐶})) |
| 3 | | preq1 4714 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → {𝑥, 𝐴} = {𝑦, 𝐴}) |
| 4 | | preq1 4714 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → {𝑥, 𝐵} = {𝑦, 𝐵}) |
| 5 | 3, 4 | preq12d 4722 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝑦, 𝐴}, {𝑦, 𝐵}}) |
| 6 | 5 | sseq1d 3995 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) |
| 7 | 2, 6 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸))) |
| 8 | 7 | eu4 2615 |
. . . 4
⊢
(∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))) |
| 9 | | frgr3v.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 10 | | frgr3v.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 11 | 9, 10 | frgr3vlem1 30259 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) |
| 12 | 11 | 3expa 1118 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) |
| 13 | 12 | biantrud 531 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)))) |
| 14 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 15 | 14 | eltp 4670 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
| 16 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴}) |
| 17 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) |
| 18 | 16, 17 | preq12d 4722 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
| 19 | 18 | sseq1d 3995 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)) |
| 20 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐴, 𝐴} ∈ V |
| 21 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐴, 𝐵} ∈ V |
| 22 | 20, 21 | prss 4801 |
. . . . . . . . . . . . 13
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸) |
| 23 | 10 | usgredgne 29190 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
| 24 | 23 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
| 25 | | df-ne 2934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴) |
| 26 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐴 = 𝐴 |
| 27 | 26 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝐴 = 𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 28 | 25, 27 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ≠ 𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 29 | 24, 28 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 30 | 29 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 32 | 31 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 34 | 22, 33 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 35 | 19, 34 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 36 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴}) |
| 37 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵}) |
| 38 | 36, 37 | preq12d 4722 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
| 39 | 38 | sseq1d 3995 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)) |
| 40 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐵, 𝐴} ∈ V |
| 41 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐵, 𝐵} ∈ V |
| 42 | 40, 41 | prss 4801 |
. . . . . . . . . . . . 13
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸) |
| 43 | 10 | usgredgne 29190 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 ≠ 𝐵) |
| 44 | 43 | adantll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵 ≠ 𝐵) |
| 45 | | df-ne 2934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐵) |
| 46 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐵 = 𝐵 |
| 47 | 46 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝐵 = 𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 48 | 45, 47 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ≠ 𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 49 | 44, 48 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 50 | 49 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 52 | 51 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({𝐵, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 54 | 42, 53 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 55 | 39, 54 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 56 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴}) |
| 57 | | preq1 4714 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵}) |
| 58 | 56, 57 | preq12d 4722 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}}) |
| 59 | 58 | sseq1d 3995 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)) |
| 60 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝐴} ∈ V |
| 61 | | prex 5412 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝐵} ∈ V |
| 62 | 60, 61 | prss 4801 |
. . . . . . . . . . . . 13
⊢ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸) |
| 63 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 64 | 62, 63 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 65 | 59, 64 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 66 | 35, 55, 65 | 3jaoi 1430 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 67 | 15, 66 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 68 | 67 | imp 406 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 69 | 68 | com12 32 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 70 | 69 | exlimdv 1933 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 71 | | prssi 4802 |
. . . . . . . . . . 11
⊢ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸) |
| 72 | 71 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸) |
| 73 | 72 | 3mix3d 1339 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)) |
| 74 | 19, 39, 59 | rextpg 4680 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))) |
| 75 | 74 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))) |
| 76 | 73, 75 | mpbird 257 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) |
| 77 | | df-rex 3062 |
. . . . . . . 8
⊢
(∃𝑥 ∈
{𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)) |
| 78 | 76, 77 | sylib 218 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)) |
| 79 | 78 | ex 412 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))) |
| 80 | 70, 79 | impbid 212 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 81 | 13, 80 | bitr3d 281 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 82 | 8, 81 | bitrid 283 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 83 | 1, 82 | bitrid 283 |
. 2
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 84 | 83 | ex 412 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |