MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr3vlem2 Structured version   Visualization version   GIF version

Theorem frgr3vlem2 30036
Description: Lemma 2 for frgr3v 30037. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frgr3v.v 𝑉 = (Vtx‘𝐺)
frgr3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgr3vlem2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐸   𝑥,𝐺   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌   𝑥,𝑍

Proof of Theorem frgr3vlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-reu 3371 . . 3 (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
2 eleq1w 2810 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑦 ∈ {𝐴, 𝐵, 𝐶}))
3 preq1 4732 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥, 𝐴} = {𝑦, 𝐴})
4 preq1 4732 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥, 𝐵} = {𝑦, 𝐵})
53, 4preq12d 4740 . . . . . . 7 (𝑥 = 𝑦 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝑦, 𝐴}, {𝑦, 𝐵}})
65sseq1d 4008 . . . . . 6 (𝑥 = 𝑦 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸))
72, 6anbi12d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)))
87eu4 2605 . . . 4 (∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)))
9 frgr3v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
10 frgr3v.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
119, 10frgr3vlem1 30035 . . . . . . 7 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
12113expa 1115 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
1312biantrud 531 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))))
14 vex 3472 . . . . . . . . . . 11 𝑥 ∈ V
1514eltp 4687 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶))
16 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
17 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
1816, 17preq12d 4740 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
1918sseq1d 4008 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸))
20 prex 5425 . . . . . . . . . . . . . 14 {𝐴, 𝐴} ∈ V
21 prex 5425 . . . . . . . . . . . . . 14 {𝐴, 𝐵} ∈ V
2220, 21prss 4818 . . . . . . . . . . . . 13 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸)
2310usgredgne 28971 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2423adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
25 df-ne 2935 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
26 eqid 2726 . . . . . . . . . . . . . . . . . . . 20 𝐴 = 𝐴
2726pm2.24i 150 . . . . . . . . . . . . . . . . . . 19 𝐴 = 𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2825, 27sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝐴𝐴 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2924, 28syl 17 . . . . . . . . . . . . . . . . 17 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
3029ex 412 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3130adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3231com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3332adantr 480 . . . . . . . . . . . . 13 (({𝐴, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3422, 33sylbir 234 . . . . . . . . . . . 12 ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3519, 34syl6bi 253 . . . . . . . . . . 11 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
36 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
37 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
3836, 37preq12d 4740 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3938sseq1d 4008 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸))
40 prex 5425 . . . . . . . . . . . . . 14 {𝐵, 𝐴} ∈ V
41 prex 5425 . . . . . . . . . . . . . 14 {𝐵, 𝐵} ∈ V
4240, 41prss 4818 . . . . . . . . . . . . 13 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸)
4310usgredgne 28971 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
4443adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → 𝐵𝐵)
45 df-ne 2935 . . . . . . . . . . . . . . . . . . 19 (𝐵𝐵 ↔ ¬ 𝐵 = 𝐵)
46 eqid 2726 . . . . . . . . . . . . . . . . . . . 20 𝐵 = 𝐵
4746pm2.24i 150 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
4845, 47sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝐵𝐵 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
4944, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐵, 𝐵} ∈ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
5049ex 412 . . . . . . . . . . . . . . . 16 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐵, 𝐵} ∈ 𝐸 → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5251com12 32 . . . . . . . . . . . . . 14 ({𝐵, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5352adantl 481 . . . . . . . . . . . . 13 (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5442, 53sylbir 234 . . . . . . . . . . . 12 ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
5539, 54syl6bi 253 . . . . . . . . . . 11 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
56 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴})
57 preq1 4732 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵})
5856, 57preq12d 4740 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}})
5958sseq1d 4008 . . . . . . . . . . . 12 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
60 prex 5425 . . . . . . . . . . . . . 14 {𝐶, 𝐴} ∈ V
61 prex 5425 . . . . . . . . . . . . . 14 {𝐶, 𝐵} ∈ V
6260, 61prss 4818 . . . . . . . . . . . . 13 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
63 ax-1 6 . . . . . . . . . . . . 13 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6462, 63sylbir 234 . . . . . . . . . . . 12 ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6559, 64syl6bi 253 . . . . . . . . . . 11 (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6635, 55, 653jaoi 1424 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6715, 66sylbi 216 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
6867imp 406 . . . . . . . 8 ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
6968com12 32 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
7069exlimdv 1928 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) → ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
71 prssi 4819 . . . . . . . . . . 11 (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
7271adantl 481 . . . . . . . . . 10 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)
73723mix3d 1335 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸))
7419, 39, 59rextpg 4698 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)))
7574ad3antrrr 727 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ 𝐸 ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ 𝐸 ∨ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ 𝐸)))
7673, 75mpbird 257 . . . . . . . 8 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)
77 df-rex 3065 . . . . . . . 8 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
7876, 77sylib 217 . . . . . . 7 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸))
7978ex 412 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) → ∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)))
8070, 79impbid 211 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
8113, 80bitr3d 281 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∃𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
828, 81bitrid 283 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
831, 82bitrid 283 . 2 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
8483ex 412 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1083  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  ∃!weu 2556  wne 2934  wrex 3064  ∃!wreu 3368  wss 3943  {cpr 4625  {ctp 4627  cfv 6537  Vtxcvtx 28764  Edgcedg 28815  USGraphcusgr 28917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-edg 28816  df-umgr 28851  df-usgr 28919
This theorem is referenced by:  frgr3v  30037
  Copyright terms: Public domain W3C validator