| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2741 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) |
| 2 | | eqeq1 2741 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐵 ↔ 𝑦 = 𝐵)) |
| 3 | 1, 2 | orbi12d 919 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵))) |
| 4 | 3 | reu8 3739 |
. . 3
⊢
(∃!𝑥 ∈
𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ ∃𝑥 ∈ 𝑉 ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦))) |
| 5 | | simprlr 780 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
| 6 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑦 = 𝐴 ↔ 𝐵 = 𝐴)) |
| 7 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑦 = 𝐵 ↔ 𝐵 = 𝐵)) |
| 8 | 6, 7 | orbi12d 919 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵))) |
| 9 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐵)) |
| 10 | 8, 9 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → 𝑥 = 𝐵))) |
| 11 | 10 | rspcv 3618 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑉 → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → ((𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → 𝑥 = 𝐵))) |
| 12 | 5, 11 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → ((𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → 𝑥 = 𝐵))) |
| 13 | | ioran 986 |
. . . . . . . . . . . 12
⊢ (¬
(𝐵 = 𝐴 ∨ 𝐵 = 𝐵) ↔ (¬ 𝐵 = 𝐴 ∧ ¬ 𝐵 = 𝐵)) |
| 14 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ 𝐵 = 𝐵 |
| 15 | 14 | pm2.24i 150 |
. . . . . . . . . . . 12
⊢ (¬
𝐵 = 𝐵 → ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 16 | 13, 15 | simplbiim 504 |
. . . . . . . . . . 11
⊢ (¬
(𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 17 | | eqtr2 2761 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) |
| 18 | 17 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐵 ∧ 𝑥 = 𝐴) → 𝐴 = 𝐵) |
| 19 | 18 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐵 ∧ 𝑥 = 𝐴) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 𝐴 = 𝐵)) |
| 20 | 19 | expimpd 453 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 21 | 16, 20 | ja 186 |
. . . . . . . . . 10
⊢ (((𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → 𝑥 = 𝐵) → ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 22 | 21 | com12 32 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (((𝐵 = 𝐴 ∨ 𝐵 = 𝐵) → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| 23 | 12, 22 | syld 47 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵)) |
| 24 | 23 | ex 412 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵))) |
| 25 | | simprll 779 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
| 26 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 27 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) |
| 28 | 26, 27 | orbi12d 919 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) |
| 29 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
| 30 | 28, 29 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) ↔ ((𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → 𝑥 = 𝐴))) |
| 31 | 30 | rspcv 3618 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → ((𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → 𝑥 = 𝐴))) |
| 32 | 25, 31 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → ((𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → 𝑥 = 𝐴))) |
| 33 | | ioran 986 |
. . . . . . . . . . . 12
⊢ (¬
(𝐴 = 𝐴 ∨ 𝐴 = 𝐵) ↔ (¬ 𝐴 = 𝐴 ∧ ¬ 𝐴 = 𝐵)) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = 𝐴 |
| 35 | 34 | pm2.24i 150 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 = 𝐴 → ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((¬
𝐴 = 𝐴 ∧ ¬ 𝐴 = 𝐵) → ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 37 | 33, 36 | sylbi 217 |
. . . . . . . . . . 11
⊢ (¬
(𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 38 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → 𝐴 = 𝐵)) |
| 39 | 38 | expimpd 453 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 40 | 37, 39 | ja 186 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → 𝑥 = 𝐴) → ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → 𝐴 = 𝐵)) |
| 41 | 40 | com12 32 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (((𝐴 = 𝐴 ∨ 𝐴 = 𝐵) → 𝑥 = 𝐴) → 𝐴 = 𝐵)) |
| 42 | 32, 41 | syld 47 |
. . . . . . . 8
⊢ ((𝑥 = 𝐵 ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉)) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵)) |
| 43 | 42 | ex 412 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵))) |
| 44 | 24, 43 | jaoi 858 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵))) |
| 45 | 44 | com12 32 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → (∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦) → 𝐴 = 𝐵))) |
| 46 | 45 | impd 410 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → (((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦)) → 𝐴 = 𝐵)) |
| 47 | 46 | rexlimdva 3155 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃𝑥 ∈ 𝑉 ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ∀𝑦 ∈ 𝑉 ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 = 𝑦)) → 𝐴 = 𝐵)) |
| 48 | 4, 47 | biimtrid 242 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| 49 | | reueq 3743 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑉 ↔ ∃!𝑥 ∈ 𝑉 𝑥 = 𝐵) |
| 50 | 49 | biimpi 216 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → ∃!𝑥 ∈ 𝑉 𝑥 = 𝐵) |
| 51 | 50 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ∃!𝑥 ∈ 𝑉 𝑥 = 𝐵) |
| 52 | 51 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → ∃!𝑥 ∈ 𝑉 𝑥 = 𝐵) |
| 53 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) |
| 54 | 53 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) |
| 55 | 54 | orbi1d 917 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐵))) |
| 56 | | oridm 905 |
. . . . . 6
⊢ ((𝑥 = 𝐵 ∨ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵) |
| 57 | 55, 56 | bitrdi 287 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
| 58 | 57 | reubidv 3398 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → (∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ ∃!𝑥 ∈ 𝑉 𝑥 = 𝐵)) |
| 59 | 52, 58 | mpbird 257 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 = 𝐵) → ∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 60 | 59 | ex 412 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 → ∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵))) |
| 61 | 48, 60 | impbid 212 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |