| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopab3 | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmopab3 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑)) | |
| 2 | pm4.71 557 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) |
| 4 | dmopab 5895 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | 19.42v 1953 | . . . . . 6 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 6 | 5 | abbii 2802 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 7 | 4, 6 | eqtri 2758 | . . . 4 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
| 8 | 7 | eqeq1i 2740 | . . 3 ⊢ (dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) |
| 9 | eqcom 2742 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) | |
| 10 | eqabb 2874 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
| 11 | 8, 9, 10 | 3bitr2ri 300 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| 12 | 1, 3, 11 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∀wral 3051 {copab 5181 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-dm 5664 |
| This theorem is referenced by: dmxpOLD 5909 fnopabg 6675 opabn1stprc 8057 n0el2 38351 |
| Copyright terms: Public domain | W3C validator |