MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab3 Structured version   Visualization version   GIF version

Theorem dmopab3 5886
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 3046 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝜑))
2 pm4.71 557 . . 3 ((𝑥𝐴 → ∃𝑦𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
32albii 1819 . 2 (∀𝑥(𝑥𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
4 dmopab 5882 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
5 19.42v 1953 . . . . . 6 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
65abbii 2797 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
74, 6eqtri 2753 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
87eqeq1i 2735 . . 3 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
9 eqcom 2737 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
10 eqabb 2868 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
118, 9, 103bitr2ri 300 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)) ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
121, 3, 113bitri 297 1 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  {copab 5172  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-dm 5651
This theorem is referenced by:  dmxpOLD  5896  fnopabg  6658  opabn1stprc  8040  n0el2  38324
  Copyright terms: Public domain W3C validator