![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmopab3 | Structured version Visualization version GIF version |
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
Ref | Expression |
---|---|
dmopab3 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑)) | |
2 | pm4.71 556 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
3 | 2 | albii 1814 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) |
4 | dmopab 5922 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | 19.42v 1950 | . . . . . 6 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
6 | 5 | abbii 2796 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
7 | 4, 6 | eqtri 2754 | . . . 4 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
8 | 7 | eqeq1i 2731 | . . 3 ⊢ (dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) |
9 | eqcom 2733 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) | |
10 | eqabb 2866 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
11 | 8, 9, 10 | 3bitr2ri 299 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
12 | 1, 3, 11 | 3bitri 296 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2703 ∀wral 3051 {copab 5215 dom cdm 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-dm 5692 |
This theorem is referenced by: dmxp 5935 fnopabg 6698 opabn1stprc 8072 n0el2 38031 |
Copyright terms: Public domain | W3C validator |