![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmopab3 | Structured version Visualization version GIF version |
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
Ref | Expression |
---|---|
dmopab3 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑)) | |
2 | pm4.71 558 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
3 | 2 | albii 1821 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) |
4 | dmopab 5915 | . . . . 5 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | 19.42v 1957 | . . . . . 6 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
6 | 5 | abbii 2802 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
7 | 4, 6 | eqtri 2760 | . . . 4 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
8 | 7 | eqeq1i 2737 | . . 3 ⊢ (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) |
9 | eqcom 2739 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) | |
10 | eqabb 2873 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
11 | 8, 9, 10 | 3bitr2ri 299 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
12 | 1, 3, 11 | 3bitri 296 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 {copab 5210 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-dm 5686 |
This theorem is referenced by: dmxp 5928 fnopabg 6687 opabn1stprc 8043 n0el2 37197 |
Copyright terms: Public domain | W3C validator |