MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppeqfsuppbi Structured version   Visualization version   GIF version

Theorem suppeqfsuppbi 9072
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
suppeqfsuppbi (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem suppeqfsuppbi
StepHypRef Expression
1 simprlr 776 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → Fun 𝐹)
2 simprll 775 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝐹𝑈)
3 simpl 482 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝑍 ∈ V)
4 funisfsupp 9063 . . . . . 6 ((Fun 𝐹𝐹𝑈𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
51, 2, 3, 4syl3anc 1369 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
65adantr 480 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
7 simpr 484 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → Fun 𝐺)
87adantr 480 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → Fun 𝐺)
9 simpl 482 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → 𝐺𝑉)
109adantr 480 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝐺𝑉)
11 simpr 484 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
12 funisfsupp 9063 . . . . . . . . 9 ((Fun 𝐺𝐺𝑉𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
138, 10, 11, 12syl3anc 1369 . . . . . . . 8 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
1413ex 412 . . . . . . 7 ((𝐺𝑉 ∧ Fun 𝐺) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1514adantl 481 . . . . . 6 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1615impcom 407 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
17 eleq1 2826 . . . . . 6 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐺 supp 𝑍) ∈ Fin))
1817bicomd 222 . . . . 5 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐺 supp 𝑍) ∈ Fin ↔ (𝐹 supp 𝑍) ∈ Fin))
1916, 18sylan9bb 509 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐺 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
206, 19bitr4d 281 . . 3 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
2120exp31 419 . 2 (𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
22 relfsupp 9060 . . . . 5 Rel finSupp
2322brrelex2i 5635 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
2422brrelex2i 5635 . . . 4 (𝐺 finSupp 𝑍𝑍 ∈ V)
2523, 24pm5.21ni 378 . . 3 𝑍 ∈ V → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
26252a1d 26 . 2 𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
2721, 26pm2.61i 182 1 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  Fun wfun 6412  (class class class)co 7255   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-fsupp 9059
This theorem is referenced by:  cantnfrescl  9364
  Copyright terms: Public domain W3C validator