MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppeqfsuppbi Structured version   Visualization version   GIF version

Theorem suppeqfsuppbi 9415
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
suppeqfsuppbi (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))

Proof of Theorem suppeqfsuppbi
StepHypRef Expression
1 simprlr 778 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → Fun 𝐹)
2 simprll 777 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝐹𝑈)
3 simpl 481 . . . . . 6 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → 𝑍 ∈ V)
4 funisfsupp 9404 . . . . . 6 ((Fun 𝐹𝐹𝑈𝑍 ∈ V) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
51, 2, 3, 4syl3anc 1368 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
65adantr 479 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
7 simpr 483 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → Fun 𝐺)
87adantr 479 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → Fun 𝐺)
9 simpl 481 . . . . . . . . . 10 ((𝐺𝑉 ∧ Fun 𝐺) → 𝐺𝑉)
109adantr 479 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝐺𝑉)
11 simpr 483 . . . . . . . . 9 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
12 funisfsupp 9404 . . . . . . . . 9 ((Fun 𝐺𝐺𝑉𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
138, 10, 11, 12syl3anc 1368 . . . . . . . 8 (((𝐺𝑉 ∧ Fun 𝐺) ∧ 𝑍 ∈ V) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
1413ex 411 . . . . . . 7 ((𝐺𝑉 ∧ Fun 𝐺) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1514adantl 480 . . . . . 6 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → (𝑍 ∈ V → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin)))
1615impcom 406 . . . . 5 ((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) → (𝐺 finSupp 𝑍 ↔ (𝐺 supp 𝑍) ∈ Fin))
17 eleq1 2814 . . . . . 6 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐺 supp 𝑍) ∈ Fin))
1817bicomd 222 . . . . 5 ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → ((𝐺 supp 𝑍) ∈ Fin ↔ (𝐹 supp 𝑍) ∈ Fin))
1916, 18sylan9bb 508 . . . 4 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐺 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
206, 19bitr4d 281 . . 3 (((𝑍 ∈ V ∧ ((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺))) ∧ (𝐹 supp 𝑍) = (𝐺 supp 𝑍)) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
2120exp31 418 . 2 (𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
22 relfsupp 9400 . . . . 5 Rel finSupp
2322brrelex2i 5731 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
2422brrelex2i 5731 . . . 4 (𝐺 finSupp 𝑍𝑍 ∈ V)
2523, 24pm5.21ni 376 . . 3 𝑍 ∈ V → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))
26252a1d 26 . 2 𝑍 ∈ V → (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍))))
2721, 26pm2.61i 182 1 (((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462   class class class wbr 5145  Fun wfun 6540  (class class class)co 7416   supp csupp 8166  Fincfn 8966   finSupp cfsupp 9398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-fsupp 9399
This theorem is referenced by:  cantnfrescl  9712
  Copyright terms: Public domain W3C validator