MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Structured version   Visualization version   GIF version

Theorem r1pw 9798
Description: A stronger property of 𝑅1 than rankpw 9796. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 9776 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
21eleq1d 2813 . . . . 5 (𝐴 (𝑅1 “ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
3 eloni 6342 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
4 ordsucelsuc 7797 . . . . . . 7 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
53, 4syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
65bicomd 223 . . . . 5 (𝐵 ∈ On → (suc (rank‘𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
72, 6sylan9bb 509 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
8 pwwf 9760 . . . . . 6 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
98biimpi 216 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
10 onsuc 7787 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
11 r1fnon 9720 . . . . . . 7 𝑅1 Fn On
1211fndmi 6622 . . . . . 6 dom 𝑅1 = On
1310, 12eleqtrrdi 2839 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1)
14 rankr1ag 9755 . . . . 5 ((𝒫 𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
159, 13, 14syl2an 596 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
1612eleq2i 2820 . . . . 5 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
17 rankr1ag 9755 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1816, 17sylan2br 595 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
197, 15, 183bitr4rd 312 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2019ex 412 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
21 r1elwf 9749 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
22 r1elwf 9749 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
23 r1elssi 9758 . . . . . 6 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
2422, 23syl 17 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
25 ssid 3969 . . . . . 6 𝐴𝐴
26 pwexr 7741 . . . . . . 7 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
27 elpwg 4566 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2826, 27syl 17 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2925, 28mpbiri 258 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴)
3024, 29sseldd 3947 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 (𝑅1 “ On))
3121, 30pm5.21ni 377 . . 3 𝐴 (𝑅1 “ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
3231a1d 25 . 2 𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
3320, 32pm2.61i 182 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871  dom cdm 5638  cima 5641  Ord word 6331  Oncon0 6332  suc csuc 6334  cfv 6511  𝑅1cr1 9715  rankcrnk 9716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718
This theorem is referenced by:  inatsk  10731
  Copyright terms: Public domain W3C validator