MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Structured version   Visualization version   GIF version

Theorem r1pw 9883
Description: A stronger property of 𝑅1 than rankpw 9881. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 9861 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
21eleq1d 2824 . . . . 5 (𝐴 (𝑅1 “ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
3 eloni 6396 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
4 ordsucelsuc 7842 . . . . . . 7 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
53, 4syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
65bicomd 223 . . . . 5 (𝐵 ∈ On → (suc (rank‘𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
72, 6sylan9bb 509 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
8 pwwf 9845 . . . . . 6 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
98biimpi 216 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
10 onsuc 7831 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
11 r1fnon 9805 . . . . . . 7 𝑅1 Fn On
1211fndmi 6673 . . . . . 6 dom 𝑅1 = On
1310, 12eleqtrrdi 2850 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1)
14 rankr1ag 9840 . . . . 5 ((𝒫 𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
159, 13, 14syl2an 596 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
1612eleq2i 2831 . . . . 5 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
17 rankr1ag 9840 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1816, 17sylan2br 595 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
197, 15, 183bitr4rd 312 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2019ex 412 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
21 r1elwf 9834 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
22 r1elwf 9834 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
23 r1elssi 9843 . . . . . 6 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
2422, 23syl 17 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
25 ssid 4018 . . . . . 6 𝐴𝐴
26 pwexr 7784 . . . . . . 7 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
27 elpwg 4608 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2826, 27syl 17 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2925, 28mpbiri 258 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴)
3024, 29sseldd 3996 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 (𝑅1 “ On))
3121, 30pm5.21ni 377 . . 3 𝐴 (𝑅1 “ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
3231a1d 25 . 2 𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
3320, 32pm2.61i 182 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cima 5692  Ord word 6385  Oncon0 6386  suc csuc 6388  cfv 6563  𝑅1cr1 9800  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  inatsk  10816
  Copyright terms: Public domain W3C validator