MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Structured version   Visualization version   GIF version

Theorem r1pw 9738
Description: A stronger property of 𝑅1 than rankpw 9736. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 9716 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
21eleq1d 2816 . . . . 5 (𝐴 (𝑅1 “ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
3 eloni 6316 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
4 ordsucelsuc 7752 . . . . . . 7 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
53, 4syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
65bicomd 223 . . . . 5 (𝐵 ∈ On → (suc (rank‘𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
72, 6sylan9bb 509 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
8 pwwf 9700 . . . . . 6 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
98biimpi 216 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
10 onsuc 7743 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
11 r1fnon 9660 . . . . . . 7 𝑅1 Fn On
1211fndmi 6585 . . . . . 6 dom 𝑅1 = On
1310, 12eleqtrrdi 2842 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1)
14 rankr1ag 9695 . . . . 5 ((𝒫 𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
159, 13, 14syl2an 596 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
1612eleq2i 2823 . . . . 5 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
17 rankr1ag 9695 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1816, 17sylan2br 595 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
197, 15, 183bitr4rd 312 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2019ex 412 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
21 r1elwf 9689 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
22 r1elwf 9689 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
23 r1elssi 9698 . . . . . 6 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
2422, 23syl 17 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
25 ssid 3952 . . . . . 6 𝐴𝐴
26 pwexr 7698 . . . . . . 7 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
27 elpwg 4550 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2826, 27syl 17 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2925, 28mpbiri 258 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴)
3024, 29sseldd 3930 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 (𝑅1 “ On))
3121, 30pm5.21ni 377 . . 3 𝐴 (𝑅1 “ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
3231a1d 25 . 2 𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
3320, 32pm2.61i 182 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856  dom cdm 5614  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  cfv 6481  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  inatsk  10669
  Copyright terms: Public domain W3C validator