MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Structured version   Visualization version   GIF version

Theorem r1pw 9268
Description: A stronger property of 𝑅1 than rankpw 9266. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 9246 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
21eleq1d 2897 . . . . 5 (𝐴 (𝑅1 “ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
3 eloni 6195 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
4 ordsucelsuc 7531 . . . . . . 7 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
53, 4syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
65bicomd 225 . . . . 5 (𝐵 ∈ On → (suc (rank‘𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
72, 6sylan9bb 512 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
8 pwwf 9230 . . . . . 6 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
98biimpi 218 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
10 suceloni 7522 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
11 r1fnon 9190 . . . . . . 7 𝑅1 Fn On
12 fndm 6449 . . . . . . 7 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . 6 dom 𝑅1 = On
1410, 13eleqtrrdi 2924 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1)
15 rankr1ag 9225 . . . . 5 ((𝒫 𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
169, 14, 15syl2an 597 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
1713eleq2i 2904 . . . . 5 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
18 rankr1ag 9225 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1917, 18sylan2br 596 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
207, 16, 193bitr4rd 314 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2120ex 415 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
22 r1elwf 9219 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
23 r1elwf 9219 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
24 r1elssi 9228 . . . . . 6 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
2523, 24syl 17 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
26 ssid 3988 . . . . . 6 𝐴𝐴
27 pwexr 7481 . . . . . . 7 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
28 elpwg 4544 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2927, 28syl 17 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
3026, 29mpbiri 260 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴)
3125, 30sseldd 3967 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 (𝑅1 “ On))
3222, 31pm5.21ni 381 . . 3 𝐴 (𝑅1 “ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
3332a1d 25 . 2 𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
3421, 33pm2.61i 184 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  𝒫 cpw 4538   cuni 4831  dom cdm 5549  cima 5552  Ord word 6184  Oncon0 6185  suc csuc 6187   Fn wfn 6344  cfv 6349  𝑅1cr1 9185  rankcrnk 9186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187  df-rank 9188
This theorem is referenced by:  inatsk  10194
  Copyright terms: Public domain W3C validator