Proof of Theorem r1pw
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rankpwi 9864 | . . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝒫 𝐴) =
suc (rank‘𝐴)) | 
| 2 | 1 | eleq1d 2825 | . . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) | 
| 3 |  | eloni 6393 | . . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) | 
| 4 |  | ordsucelsuc 7843 | . . . . . . 7
⊢ (Ord
𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵)) | 
| 5 | 3, 4 | syl 17 | . . . . . 6
⊢ (𝐵 ∈ On →
((rank‘𝐴) ∈
𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) | 
| 6 | 5 | bicomd 223 | . . . . 5
⊢ (𝐵 ∈ On → (suc
(rank‘𝐴) ∈ suc
𝐵 ↔ (rank‘𝐴) ∈ 𝐵)) | 
| 7 | 2, 6 | sylan9bb 509 | . . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔
(rank‘𝐴) ∈ 𝐵)) | 
| 8 |  | pwwf 9848 | . . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) | 
| 9 | 8 | biimpi 216 | . . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) | 
| 10 |  | onsuc 7832 | . . . . . 6
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | 
| 11 |  | r1fnon 9808 | . . . . . . 7
⊢
𝑅1 Fn On | 
| 12 | 11 | fndmi 6671 | . . . . . 6
⊢ dom
𝑅1 = On | 
| 13 | 10, 12 | eleqtrrdi 2851 | . . . . 5
⊢ (𝐵 ∈ On → suc 𝐵 ∈ dom
𝑅1) | 
| 14 |  | rankr1ag 9843 | . . . . 5
⊢
((𝒫 𝐴 ∈
∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom
𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc
𝐵) ↔
(rank‘𝒫 𝐴)
∈ suc 𝐵)) | 
| 15 | 9, 13, 14 | syl2an 596 | . . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫
𝐴 ∈
(𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵)) | 
| 16 | 12 | eleq2i 2832 | . . . . 5
⊢ (𝐵 ∈ dom
𝑅1 ↔ 𝐵 ∈ On) | 
| 17 |  | rankr1ag 9843 | . . . . 5
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | 
| 18 | 16, 17 | sylan2br 595 | . . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | 
| 19 | 7, 15, 18 | 3bitr4rd 312 | . . 3
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) | 
| 20 | 19 | ex 412 | . 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) | 
| 21 |  | r1elwf 9837 | . . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) | 
| 22 |  | r1elwf 9837 | . . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ ∪
(𝑅1 “ On)) | 
| 23 |  | r1elssi 9846 | . . . . . 6
⊢
(𝒫 𝐴 ∈
∪ (𝑅1 “ On) →
𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) | 
| 24 | 22, 23 | syl 17 | . . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ⊆ ∪
(𝑅1 “ On)) | 
| 25 |  | ssid 4005 | . . . . . 6
⊢ 𝐴 ⊆ 𝐴 | 
| 26 |  | pwexr 7786 | . . . . . . 7
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ V) | 
| 27 |  | elpwg 4602 | . . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | 
| 28 | 26, 27 | syl 17 | . . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | 
| 29 | 25, 28 | mpbiri 258 | . . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴) | 
| 30 | 24, 29 | sseldd 3983 | . . . 4
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) | 
| 31 | 21, 30 | pm5.21ni 377 | . . 3
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) | 
| 32 | 31 | a1d 25 | . 2
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) | 
| 33 | 20, 32 | pm2.61i 182 | 1
⊢ (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |