Proof of Theorem r1pw
| Step | Hyp | Ref
| Expression |
| 1 | | rankpwi 9783 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝒫 𝐴) =
suc (rank‘𝐴)) |
| 2 | 1 | eleq1d 2814 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) |
| 3 | | eloni 6345 |
. . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 4 | | ordsucelsuc 7800 |
. . . . . . 7
⊢ (Ord
𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵)) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ On →
((rank‘𝐴) ∈
𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) |
| 6 | 5 | bicomd 223 |
. . . . 5
⊢ (𝐵 ∈ On → (suc
(rank‘𝐴) ∈ suc
𝐵 ↔ (rank‘𝐴) ∈ 𝐵)) |
| 7 | 2, 6 | sylan9bb 509 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔
(rank‘𝐴) ∈ 𝐵)) |
| 8 | | pwwf 9767 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) |
| 9 | 8 | biimpi 216 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) |
| 10 | | onsuc 7790 |
. . . . . 6
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) |
| 11 | | r1fnon 9727 |
. . . . . . 7
⊢
𝑅1 Fn On |
| 12 | 11 | fndmi 6625 |
. . . . . 6
⊢ dom
𝑅1 = On |
| 13 | 10, 12 | eleqtrrdi 2840 |
. . . . 5
⊢ (𝐵 ∈ On → suc 𝐵 ∈ dom
𝑅1) |
| 14 | | rankr1ag 9762 |
. . . . 5
⊢
((𝒫 𝐴 ∈
∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom
𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc
𝐵) ↔
(rank‘𝒫 𝐴)
∈ suc 𝐵)) |
| 15 | 9, 13, 14 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫
𝐴 ∈
(𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵)) |
| 16 | 12 | eleq2i 2821 |
. . . . 5
⊢ (𝐵 ∈ dom
𝑅1 ↔ 𝐵 ∈ On) |
| 17 | | rankr1ag 9762 |
. . . . 5
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 18 | 16, 17 | sylan2br 595 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 19 | 7, 15, 18 | 3bitr4rd 312 |
. . 3
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |
| 20 | 19 | ex 412 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) |
| 21 | | r1elwf 9756 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 22 | | r1elwf 9756 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 23 | | r1elssi 9765 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
∪ (𝑅1 “ On) →
𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ⊆ ∪
(𝑅1 “ On)) |
| 25 | | ssid 3972 |
. . . . . 6
⊢ 𝐴 ⊆ 𝐴 |
| 26 | | pwexr 7744 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
| 27 | | elpwg 4569 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 28 | 26, 27 | syl 17 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 29 | 25, 28 | mpbiri 258 |
. . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴) |
| 30 | 24, 29 | sseldd 3950 |
. . . 4
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 31 | 21, 30 | pm5.21ni 377 |
. . 3
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |
| 32 | 31 | a1d 25 |
. 2
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) |
| 33 | 20, 32 | pm2.61i 182 |
1
⊢ (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |