MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pw Structured version   Visualization version   GIF version

Theorem r1pw 9258
Description: A stronger property of 𝑅1 than rankpw 9256. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pw (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pw
StepHypRef Expression
1 rankpwi 9236 . . . . . 6 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
21eleq1d 2874 . . . . 5 (𝐴 (𝑅1 “ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
3 eloni 6169 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
4 ordsucelsuc 7517 . . . . . . 7 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
53, 4syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵))
65bicomd 226 . . . . 5 (𝐵 ∈ On → (suc (rank‘𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
72, 6sylan9bb 513 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → ((rank‘𝒫 𝐴) ∈ suc 𝐵 ↔ (rank‘𝐴) ∈ 𝐵))
8 pwwf 9220 . . . . . 6 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
98biimpi 219 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
10 suceloni 7508 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
11 r1fnon 9180 . . . . . . 7 𝑅1 Fn On
1211fndmi 6426 . . . . . 6 dom 𝑅1 = On
1310, 12eleqtrrdi 2901 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1)
14 rankr1ag 9215 . . . . 5 ((𝒫 𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
159, 13, 14syl2an 598 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵))
1612eleq2i 2881 . . . . 5 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
17 rankr1ag 9215 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1816, 17sylan2br 597 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
197, 15, 183bitr4rd 315 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2019ex 416 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
21 r1elwf 9209 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
22 r1elwf 9209 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
23 r1elssi 9218 . . . . . 6 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
2422, 23syl 17 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 (𝑅1 “ On))
25 ssid 3937 . . . . . 6 𝐴𝐴
26 pwexr 7467 . . . . . . 7 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
27 elpwg 4500 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2826, 27syl 17 . . . . . 6 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
2925, 28mpbiri 261 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴)
3024, 29sseldd 3916 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 (𝑅1 “ On))
3121, 30pm5.21ni 382 . . 3 𝐴 (𝑅1 “ On) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
3231a1d 25 . 2 𝐴 (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
3320, 32pm2.61i 185 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111  Vcvv 3441  wss 3881  𝒫 cpw 4497   cuni 4800  dom cdm 5519  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  inatsk  10189
  Copyright terms: Public domain W3C validator