MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovord Structured version   Visualization version   GIF version

Theorem ndmovord 7591
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovord.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovord.5 ¬ ∅ ∈ 𝑆
ndmovord.6 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovord (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))

Proof of Theorem ndmovord
StepHypRef Expression
1 ndmovord.6 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
213expia 1118 . 2 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
3 ndmovord.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 5732 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
53brel 5732 . . . . 5 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
6 ndmov.1 . . . . . . . 8 dom 𝐹 = (𝑆 × 𝑆)
7 ndmovord.5 . . . . . . . 8 ¬ ∅ ∈ 𝑆
86, 7ndmovrcl 7587 . . . . . . 7 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
98simprd 495 . . . . . 6 ((𝐶𝐹𝐴) ∈ 𝑆𝐴𝑆)
106, 7ndmovrcl 7587 . . . . . . 7 ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶𝑆𝐵𝑆))
1110simprd 495 . . . . . 6 ((𝐶𝐹𝐵) ∈ 𝑆𝐵𝑆)
129, 11anim12i 612 . . . . 5 (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴𝑆𝐵𝑆))
135, 12syl 17 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴𝑆𝐵𝑆))
144, 13pm5.21ni 377 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1514a1d 25 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15pm2.61i 182 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3941  c0 4315   class class class wbr 5139   × cxp 5665  dom cdm 5667  (class class class)co 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-dm 5677  df-iota 6486  df-fv 6542  df-ov 7405
This theorem is referenced by:  ltapi  10895  ltmpi  10896  ltanq  10963  ltmnq  10964  ltapr  11037  ltasr  11092
  Copyright terms: Public domain W3C validator