![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovord | Structured version Visualization version GIF version |
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmovord.4 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
ndmovord.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmovord.6 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Ref | Expression |
---|---|
ndmovord | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovord.6 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | |
2 | 1 | 3expia 1101 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
3 | ndmovord.4 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
4 | 3 | brel 5467 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
5 | 3 | brel 5467 | . . . . 5 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆)) |
6 | ndmov.1 | . . . . . . . 8 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
7 | ndmovord.5 | . . . . . . . 8 ⊢ ¬ ∅ ∈ 𝑆 | |
8 | 6, 7 | ndmovrcl 7150 | . . . . . . 7 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
9 | 8 | simprd 488 | . . . . . 6 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
10 | 6, 7 | ndmovrcl 7150 | . . . . . . 7 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
11 | 10 | simprd 488 | . . . . . 6 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → 𝐵 ∈ 𝑆) |
12 | 9, 11 | anim12i 603 | . . . . 5 ⊢ (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
13 | 5, 12 | syl 17 | . . . 4 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
14 | 4, 13 | pm5.21ni 370 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
15 | 14 | a1d 25 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
16 | 2, 15 | pm2.61i 177 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ⊆ wss 3830 ∅c0 4179 class class class wbr 4929 × cxp 5405 dom cdm 5407 (class class class)co 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-xp 5413 df-dm 5417 df-iota 6152 df-fv 6196 df-ov 6979 |
This theorem is referenced by: ltapi 10123 ltmpi 10124 ltanq 10191 ltmnq 10192 ltapr 10265 ltasr 10320 |
Copyright terms: Public domain | W3C validator |