MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovord Structured version   Visualization version   GIF version

Theorem ndmovord 7376
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovord.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovord.5 ¬ ∅ ∈ 𝑆
ndmovord.6 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovord (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))

Proof of Theorem ndmovord
StepHypRef Expression
1 ndmovord.6 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
213expia 1123 . 2 ((𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
3 ndmovord.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 5599 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
53brel 5599 . . . . 5 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
6 ndmov.1 . . . . . . . 8 dom 𝐹 = (𝑆 × 𝑆)
7 ndmovord.5 . . . . . . . 8 ¬ ∅ ∈ 𝑆
86, 7ndmovrcl 7372 . . . . . . 7 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
98simprd 499 . . . . . 6 ((𝐶𝐹𝐴) ∈ 𝑆𝐴𝑆)
106, 7ndmovrcl 7372 . . . . . . 7 ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶𝑆𝐵𝑆))
1110simprd 499 . . . . . 6 ((𝐶𝐹𝐵) ∈ 𝑆𝐵𝑆)
129, 11anim12i 616 . . . . 5 (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴𝑆𝐵𝑆))
135, 12syl 17 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴𝑆𝐵𝑆))
144, 13pm5.21ni 382 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1514a1d 25 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15pm2.61i 185 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wss 3853  c0 4223   class class class wbr 5039   × cxp 5534  dom cdm 5536  (class class class)co 7191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-xp 5542  df-dm 5546  df-iota 6316  df-fv 6366  df-ov 7194
This theorem is referenced by:  ltapi  10482  ltmpi  10483  ltanq  10550  ltmnq  10551  ltapr  10624  ltasr  10679
  Copyright terms: Public domain W3C validator