Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmovord | Structured version Visualization version GIF version |
Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmovord.4 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
ndmovord.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmovord.6 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Ref | Expression |
---|---|
ndmovord | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovord.6 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | |
2 | 1 | 3expia 1120 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
3 | ndmovord.4 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
4 | 3 | brel 5668 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
5 | 3 | brel 5668 | . . . . 5 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆)) |
6 | ndmov.1 | . . . . . . . 8 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
7 | ndmovord.5 | . . . . . . . 8 ⊢ ¬ ∅ ∈ 𝑆 | |
8 | 6, 7 | ndmovrcl 7496 | . . . . . . 7 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
9 | 8 | simprd 496 | . . . . . 6 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
10 | 6, 7 | ndmovrcl 7496 | . . . . . . 7 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
11 | 10 | simprd 496 | . . . . . 6 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → 𝐵 ∈ 𝑆) |
12 | 9, 11 | anim12i 613 | . . . . 5 ⊢ (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
13 | 5, 12 | syl 17 | . . . 4 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
14 | 4, 13 | pm5.21ni 378 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
15 | 14 | a1d 25 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
16 | 2, 15 | pm2.61i 182 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ∅c0 4266 class class class wbr 5085 × cxp 5603 dom cdm 5605 (class class class)co 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-xp 5611 df-dm 5615 df-iota 6415 df-fv 6471 df-ov 7316 |
This theorem is referenced by: ltapi 10729 ltmpi 10730 ltanq 10797 ltmnq 10798 ltapr 10871 ltasr 10926 |
Copyright terms: Public domain | W3C validator |