| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovord | Structured version Visualization version GIF version | ||
| Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmovord.4 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| ndmovord.5 | ⊢ ¬ ∅ ∈ 𝑆 |
| ndmovord.6 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Ref | Expression |
|---|---|
| ndmovord | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovord.6 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | |
| 2 | 1 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
| 3 | ndmovord.4 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 4 | 3 | brel 5684 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 5 | 3 | brel 5684 | . . . . 5 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆)) |
| 6 | ndmov.1 | . . . . . . . 8 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 7 | ndmovord.5 | . . . . . . . 8 ⊢ ¬ ∅ ∈ 𝑆 | |
| 8 | 6, 7 | ndmovrcl 7538 | . . . . . . 7 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 9 | 8 | simprd 495 | . . . . . 6 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
| 10 | 6, 7 | ndmovrcl 7538 | . . . . . . 7 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 11 | 10 | simprd 495 | . . . . . 6 ⊢ ((𝐶𝐹𝐵) ∈ 𝑆 → 𝐵 ∈ 𝑆) |
| 12 | 9, 11 | anim12i 613 | . . . . 5 ⊢ (((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 13 | 5, 12 | syl 17 | . . . 4 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 14 | 4, 13 | pm5.21ni 377 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| 15 | 14 | a1d 25 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
| 16 | 2, 15 | pm2.61i 182 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4282 class class class wbr 5093 × cxp 5617 dom cdm 5619 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6443 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: ltapi 10800 ltmpi 10801 ltanq 10868 ltmnq 10869 ltapr 10942 ltasr 10997 |
| Copyright terms: Public domain | W3C validator |