MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixx3g Structured version   Visualization version   GIF version

Theorem elixx3g 13295
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
elixx3g (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem elixx3g
StepHypRef Expression
1 anass 468 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))))
2 df-3an 1088 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*))
32anbi1i 624 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
4 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13291 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
6 3anass 1094 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
7 ibar 528 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
86, 7bitrid 283 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
95, 8bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
104ixxf 13292 . . . . . . 7 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
1110fdmi 6681 . . . . . 6 dom 𝑂 = (ℝ* × ℝ*)
1211ndmov 7553 . . . . 5 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = ∅)
1312eleq2d 2814 . . . 4 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ ∅))
14 noel 4297 . . . . . 6 ¬ 𝐶 ∈ ∅
1514pm2.21i 119 . . . . 5 (𝐶 ∈ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
16 simpl 482 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1715, 16pm5.21ni 377 . . . 4 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ∅ ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
1813, 17bitrd 279 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
199, 18pm2.61i 182 . 2 (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))))
201, 3, 193bitr4ri 304 1 (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  c0 4292  𝒫 cpw 4559   class class class wbr 5102   × cxp 5629  (class class class)co 7369  cmpo 7371  *cxr 11183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-xr 11188
This theorem is referenced by:  ixxss1  13300  ixxss2  13301  ixxss12  13302  elioo3g  13311  elicore  13335  iccss2  13354  iccssico2  13357  xrtgioo  24728  ftc1anclem7  37686  ftc1anclem8  37687  ftc1anc  37688  eliocre  45500  lbioc  45504
  Copyright terms: Public domain W3C validator