MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixx3g Structured version   Visualization version   GIF version

Theorem elixx3g 13397
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
elixx3g (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem elixx3g
StepHypRef Expression
1 anass 468 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))))
2 df-3an 1088 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*))
32anbi1i 624 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
4 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13393 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
6 3anass 1094 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
7 ibar 528 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
86, 7bitrid 283 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
95, 8bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
104ixxf 13394 . . . . . . 7 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
1110fdmi 6748 . . . . . 6 dom 𝑂 = (ℝ* × ℝ*)
1211ndmov 7617 . . . . 5 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = ∅)
1312eleq2d 2825 . . . 4 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ ∅))
14 noel 4344 . . . . . 6 ¬ 𝐶 ∈ ∅
1514pm2.21i 119 . . . . 5 (𝐶 ∈ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
16 simpl 482 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1715, 16pm5.21ni 377 . . . 4 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ∅ ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
1813, 17bitrd 279 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))))
199, 18pm2.61i 182 . 2 (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵))))
201, 3, 193bitr4ri 304 1 (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  c0 4339  𝒫 cpw 4605   class class class wbr 5148   × cxp 5687  (class class class)co 7431  cmpo 7433  *cxr 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-xr 11297
This theorem is referenced by:  ixxss1  13402  ixxss2  13403  ixxss12  13404  elioo3g  13413  elicore  13436  iccss2  13455  iccssico2  13458  xrtgioo  24842  ftc1anclem7  37686  ftc1anclem8  37687  ftc1anc  37688  eliocre  45462  lbioc  45466
  Copyright terms: Public domain W3C validator