| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elixx3g | Structured version Visualization version GIF version | ||
| Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| elixx3g | ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)))) | |
| 2 | df-3an 1089 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*)) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| 4 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 5 | 4 | elixx1 13396 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| 6 | 3anass 1095 | . . . . 5 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | |
| 7 | ibar 528 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) | |
| 8 | 6, 7 | bitrid 283 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
| 9 | 5, 8 | bitrd 279 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
| 10 | 4 | ixxf 13397 | . . . . . . 7 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 11 | 10 | fdmi 6747 | . . . . . 6 ⊢ dom 𝑂 = (ℝ* × ℝ*) |
| 12 | 11 | ndmov 7617 | . . . . 5 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = ∅) |
| 13 | 12 | eleq2d 2827 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ ∅)) |
| 14 | noel 4338 | . . . . . 6 ⊢ ¬ 𝐶 ∈ ∅ | |
| 15 | 14 | pm2.21i 119 | . . . . 5 ⊢ (𝐶 ∈ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 16 | simpl 482 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
| 17 | 15, 16 | pm5.21ni 377 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ ∅ ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
| 18 | 13, 17 | bitrd 279 | . . 3 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
| 19 | 9, 18 | pm2.61i 182 | . 2 ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)))) |
| 20 | 1, 3, 19 | 3bitr4ri 304 | 1 ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 ∅c0 4333 𝒫 cpw 4600 class class class wbr 5143 × cxp 5683 (class class class)co 7431 ∈ cmpo 7433 ℝ*cxr 11294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-xr 11299 |
| This theorem is referenced by: ixxss1 13405 ixxss2 13406 ixxss12 13407 elioo3g 13416 elicore 13439 iccss2 13458 iccssico2 13461 xrtgioo 24828 ftc1anclem7 37706 ftc1anclem8 37707 ftc1anc 37708 eliocre 45522 lbioc 45526 |
| Copyright terms: Public domain | W3C validator |