MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz2 Structured version   Visualization version   GIF version

Theorem elfz2 12552
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz2
StepHypRef Expression
1 anass 456 . 2 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
2 df-3an 1102 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
32anbi1i 612 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
4 elfz1 12550 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
5 3anass 1109 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
6 ibar 520 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
75, 6syl5bb 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
84, 7bitrd 270 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
9 fzf 12549 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
109fdmi 6262 . . . . . 6 dom ... = (ℤ × ℤ)
1110ndmov 7044 . . . . 5 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
1211eleq2d 2871 . . . 4 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ∅))
13 noel 4120 . . . . . 6 ¬ 𝐾 ∈ ∅
1413pm2.21i 117 . . . . 5 (𝐾 ∈ ∅ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
15 simpl 470 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1614, 15pm5.21ni 368 . . . 4 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ∅ ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
1712, 16bitrd 270 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
188, 17pm2.61i 176 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
191, 3, 183bitr4ri 295 1 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384  w3a 1100  wcel 2156  c0 4116  𝒫 cpw 4351   class class class wbr 4844   × cxp 5309  (class class class)co 6870  cle 10356  cz 11639  ...cfz 12545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-neg 10550  df-z 11640  df-fz 12546
This theorem is referenced by:  elfz4  12554  elfzuzb  12555  0nelfz1  12579  uzsubsubfz  12582  fzmmmeqm  12593  ssfzunsnext  12605  fzpreddisj  12609  elfz1b  12628  fzp1nel  12643  elfz0ubfz0  12663  elfz0fzfz0  12664  fz0fzelfz0  12665  fz0fzdiffz0  12668  elfzmlbp  12670  preduz  12681  fzoun  12725  fzind2  12806  swrdswrdlem  13679  swrdswrd  13680  swrdccatin12lem2a  13705  swrdccatin12lem2b  13706  swrdccatin2  13707  swrdccatin12lem2  13709  swrdccat3  13712  2cshwcshw  13791  cshwcsh2id  13794  fprodntriv  14889  fprodeq0  14922  prmgaplem4  15971  chfacfscmulgsum  20874  chfacfpmmulgsum  20878  gausslemma2dlem3  25303  2lgslem1a1  25324  crctcshwlkn0lem3  26929  wwlksnextproplem2  27044  clwlksfclwwlkOLD  27232  monoords  39986  uzfissfz  40016  iuneqfzuzlem  40024  ssuzfz  40039  elfzd  40109  fmul01lt1lem1  40290  fmul01lt1lem2  40291  mccllem  40303  sumnnodd  40336  dvnmul  40632  dvnprodlem1  40635  dvnprodlem2  40636  itgspltprt  40668  stoweidlem3  40693  stoweidlem34  40724  stoweidlem51  40741  fourierdlem12  40809  fourierdlem14  40811  fourierdlem41  40838  fourierdlem48  40844  fourierdlem49  40845  fourierdlem50  40846  fourierdlem79  40875  fourierdlem92  40888  fourierdlem93  40889  elaa2lem  40923  etransclem3  40927  etransclem7  40931  etransclem10  40934  etransclem24  40948  etransclem27  40951  etransclem28  40952  etransclem35  40959  etransclem38  40962  etransclem44  40968  iundjiun  41150  caratheodorylem1  41216  elfzelfzlble  41900  iccpartiltu  41927  pfxccatin12lem1  41992  pfxccatin12lem2  41993  pfxccat3  41995  31prm  42081  nnsum4primeseven  42257  nnsum4primesevenALTV  42258
  Copyright terms: Public domain W3C validator