| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfz2 | ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 4 | elfz1 13449 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 5 | 3anass 1094 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 6 | ibar 528 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))))) | |
| 7 | 5, 6 | bitrid 283 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))))) |
| 8 | 4, 7 | bitrd 279 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))))) |
| 9 | fzf 13448 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 10 | 9 | fdmi 6681 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 11 | 10 | ndmov 7553 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
| 12 | 11 | eleq2d 2814 | . . . 4 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ∅)) |
| 13 | noel 4297 | . . . . . 6 ⊢ ¬ 𝐾 ∈ ∅ | |
| 14 | 13 | pm2.21i 119 | . . . . 5 ⊢ (𝐾 ∈ ∅ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 15 | simpl 482 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 16 | 14, 15 | pm5.21ni 377 | . . . 4 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ∅ ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))))) |
| 17 | 12, 16 | bitrd 279 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))))) |
| 18 | 8, 17 | pm2.61i 182 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) |
| 19 | 1, 3, 18 | 3bitr4ri 304 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∅c0 4292 𝒫 cpw 4559 class class class wbr 5102 × cxp 5629 (class class class)co 7369 ≤ cle 11185 ℤcz 12505 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-neg 11384 df-z 12506 df-fz 13445 |
| This theorem is referenced by: elfzd 13452 elfz4 13454 elfzuzb 13455 0nelfz1 13480 uzsubsubfz 13483 fzmmmeqm 13494 fzpreddisj 13510 elfz1b 13530 fzdif1 13542 fzp1nel 13548 elfz0ubfz0 13569 elfz0fzfz0 13570 fz0fzelfz0 13571 fz0fzdiffz0 13574 elfzmlbp 13576 preduz 13587 fzind2 13722 swrdswrdlem 14645 swrdswrd 14646 pfxccatin12lem2a 14668 pfxccatin12lem1 14669 swrdccatin2 14670 pfxccatin12lem2 14672 pfxccat3 14675 2cshwcshw 14767 cshwcsh2id 14770 fprodntriv 15884 fprodeq0 15917 prmgaplem4 17001 chfacfscmulgsum 22723 chfacfpmmulgsum 22727 gausslemma2dlem3 27255 2lgslem1a1 27276 crctcshwlkn0lem3 29715 fzne2d 41941 fmul01lt1lem2 45556 dvnprodlem2 45918 stoweidlem34 46005 fourierdlem12 46090 etransclem10 46215 etransclem24 46229 elfzelfzlble 47295 iccpartiltu 47396 31prm 47571 nnsum4primeseven 47774 nnsum4primesevenALTV 47775 |
| Copyright terms: Public domain | W3C validator |