MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz2 Structured version   Visualization version   GIF version

Theorem elfz2 13555
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz2
StepHypRef Expression
1 anass 468 . 2 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
2 df-3an 1088 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
32anbi1i 624 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
4 elfz1 13553 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
5 3anass 1094 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
6 ibar 528 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
75, 6bitrid 283 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
84, 7bitrd 279 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
9 fzf 13552 . . . . . . 7 ...:(ℤ × ℤ)⟶𝒫 ℤ
109fdmi 6746 . . . . . 6 dom ... = (ℤ × ℤ)
1110ndmov 7618 . . . . 5 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
1211eleq2d 2826 . . . 4 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ∅))
13 noel 4337 . . . . . 6 ¬ 𝐾 ∈ ∅
1413pm2.21i 119 . . . . 5 (𝐾 ∈ ∅ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
15 simpl 482 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1614, 15pm5.21ni 377 . . . 4 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ∅ ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
1712, 16bitrd 279 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
188, 17pm2.61i 182 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
191, 3, 183bitr4ri 304 1 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086  wcel 2107  c0 4332  𝒫 cpw 4599   class class class wbr 5142   × cxp 5682  (class class class)co 7432  cle 11297  cz 12615  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-neg 11496  df-z 12616  df-fz 13549
This theorem is referenced by:  elfzd  13556  elfz4  13558  elfzuzb  13559  0nelfz1  13584  uzsubsubfz  13587  fzmmmeqm  13598  fzpreddisj  13614  elfz1b  13634  fzdif1  13646  fzp1nel  13652  elfz0ubfz0  13673  elfz0fzfz0  13674  fz0fzelfz0  13675  fz0fzdiffz0  13678  elfzmlbp  13680  preduz  13691  fzind2  13825  swrdswrdlem  14743  swrdswrd  14744  pfxccatin12lem2a  14766  pfxccatin12lem1  14767  swrdccatin2  14768  pfxccatin12lem2  14770  pfxccat3  14773  2cshwcshw  14865  cshwcsh2id  14868  fprodntriv  15979  fprodeq0  16012  prmgaplem4  17093  chfacfscmulgsum  22867  chfacfpmmulgsum  22871  gausslemma2dlem3  27413  2lgslem1a1  27434  crctcshwlkn0lem3  29833  fzne2d  41982  fmul01lt1lem2  45605  dvnprodlem2  45967  stoweidlem34  46054  fourierdlem12  46139  etransclem10  46264  etransclem24  46278  elfzelfzlble  47338  iccpartiltu  47414  31prm  47589  nnsum4primeseven  47792  nnsum4primesevenALTV  47793
  Copyright terms: Public domain W3C validator