MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomg Structured version   Visualization version   GIF version

Theorem brdomg 8881
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8880 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
StepHypRef Expression
1 brdom2g 8880 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
21ex 412 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
3 reldom 8875 . . . . 5 Rel ≼
43brrelex1i 5670 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 f1f 6719 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
6 fdm 6660 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
7 vex 3440 . . . . . . . 8 𝑓 ∈ V
87dmex 7839 . . . . . . 7 dom 𝑓 ∈ V
96, 8eqeltrrdi 2840 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
105, 9syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110exlimiv 1931 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
124, 11pm5.21ni 377 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1312a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
142, 13pm2.61i 182 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5089  dom cdm 5614  wf 6477  1-1wf1 6478  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-fn 6484  df-f 6485  df-f1 6486  df-dom 8871
This theorem is referenced by:  brdom  8883  f1dom3g  8890  f1domg  8894  dom3d  8916  domdifsn  8973  fidomtri  9886  hashdom  14286  hashge3el3dif  14394  sizusglecusg  29442  erdsze2lem1  35247  hashnexinj  42231
  Copyright terms: Public domain W3C validator