| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomg | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8906 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2g 8906 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 3 | reldom 8901 | . . . . 5 ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i 5687 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 5 | f1f 6738 | . . . . . 6 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 6 | fdm 6679 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 7 | vex 3448 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
| 8 | 7 | dmex 7865 | . . . . . . 7 ⊢ dom 𝑓 ∈ V |
| 9 | 6, 8 | eqeltrrdi 2837 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 11 | 10 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 12 | 4, 11 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 14 | 2, 13 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 dom cdm 5631 ⟶wf 6495 –1-1→wf1 6496 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-fn 6502 df-f 6503 df-f1 6504 df-dom 8897 |
| This theorem is referenced by: brdom 8909 f1dom3g 8916 f1domg 8920 dom3d 8942 domdifsn 9001 fidomtri 9922 hashdom 14320 hashge3el3dif 14428 sizusglecusg 29444 erdsze2lem1 35183 hashnexinj 42109 |
| Copyright terms: Public domain | W3C validator |