Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brdomg | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 6564 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
2 | 1 | exbidv 1927 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
3 | f1eq3 6565 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
4 | 3 | exbidv 1927 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
5 | df-dom 8550 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
6 | 2, 4, 5 | brabg 5391 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
7 | 6 | ex 416 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
8 | reldom 8554 | . . . . 5 ⊢ Rel ≼ | |
9 | 8 | brrelex1i 5573 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
10 | f1f 6568 | . . . . . 6 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
11 | fdm 6507 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
12 | vex 3401 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
13 | 12 | dmex 7635 | . . . . . . 7 ⊢ dom 𝑓 ∈ V |
14 | 11, 13 | eqeltrrdi 2842 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
15 | 10, 14 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
16 | 15 | exlimiv 1936 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
17 | 9, 16 | pm5.21ni 382 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
18 | 17 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
19 | 7, 18 | pm2.61i 185 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1542 ∃wex 1786 ∈ wcel 2113 Vcvv 3397 class class class wbr 5027 dom cdm 5519 ⟶wf 6329 –1-1→wf1 6330 ≼ cdom 8546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-xp 5525 df-rel 5526 df-cnv 5527 df-dm 5529 df-rn 5530 df-fn 6336 df-f 6337 df-f1 6338 df-dom 8550 |
This theorem is referenced by: brdomi 8559 brdom 8560 f1dom2g 8566 f1domg 8568 dom3d 8590 domdifsn 8642 fidomtri 9488 hashdom 13825 hashge3el3dif 13931 sizusglecusg 27397 erdsze2lem1 32728 |
Copyright terms: Public domain | W3C validator |