![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdomg | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 9015 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2g 9015 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
3 | reldom 9009 | . . . . 5 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5756 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
5 | f1f 6817 | . . . . . 6 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
6 | fdm 6756 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
7 | vex 3492 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
8 | 7 | dmex 7949 | . . . . . . 7 ⊢ dom 𝑓 ∈ V |
9 | 6, 8 | eqeltrrdi 2853 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
11 | 10 | exlimiv 1929 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
12 | 4, 11 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
14 | 2, 13 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 –1-1→wf1 6570 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fn 6576 df-f 6577 df-f1 6578 df-dom 9005 |
This theorem is referenced by: brdomiOLD 9019 brdom 9020 f1dom3g 9027 f1dom2gOLD 9030 f1domg 9032 dom3d 9054 domdifsn 9120 fidomtri 10062 hashdom 14428 hashge3el3dif 14536 sizusglecusg 29499 erdsze2lem1 35171 hashnexinj 42085 |
Copyright terms: Public domain | W3C validator |