| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomg | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8970 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2g 8970 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 3 | reldom 8965 | . . . . 5 ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i 5710 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 5 | f1f 6774 | . . . . . 6 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 6 | fdm 6715 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 7 | vex 3463 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
| 8 | 7 | dmex 7905 | . . . . . . 7 ⊢ dom 𝑓 ∈ V |
| 9 | 6, 8 | eqeltrrdi 2843 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 11 | 10 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 12 | 4, 11 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 14 | 2, 13 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 ⟶wf 6527 –1-1→wf1 6528 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-fn 6534 df-f 6535 df-f1 6536 df-dom 8961 |
| This theorem is referenced by: brdomiOLD 8974 brdom 8975 f1dom3g 8982 f1domg 8986 dom3d 9008 domdifsn 9068 fidomtri 10007 hashdom 14397 hashge3el3dif 14505 sizusglecusg 29443 erdsze2lem1 35225 hashnexinj 42141 |
| Copyright terms: Public domain | W3C validator |