MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomg Structured version   Visualization version   GIF version

Theorem brdomg 8933
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 8932 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
StepHypRef Expression
1 brdom2g 8932 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
21ex 412 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
3 reldom 8927 . . . . 5 Rel ≼
43brrelex1i 5697 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 f1f 6759 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
6 fdm 6700 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
7 vex 3454 . . . . . . . 8 𝑓 ∈ V
87dmex 7888 . . . . . . 7 dom 𝑓 ∈ V
96, 8eqeltrrdi 2838 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
105, 9syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110exlimiv 1930 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
124, 11pm5.21ni 377 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1312a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
142, 13pm2.61i 182 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110  dom cdm 5641  wf 6510  1-1wf1 6511  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fn 6517  df-f 6518  df-f1 6519  df-dom 8923
This theorem is referenced by:  brdom  8935  f1dom3g  8942  f1domg  8946  dom3d  8968  domdifsn  9028  fidomtri  9953  hashdom  14351  hashge3el3dif  14459  sizusglecusg  29398  erdsze2lem1  35197  hashnexinj  42123
  Copyright terms: Public domain W3C validator