MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomg Structured version   Visualization version   GIF version

Theorem brdomg 8746
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) (Proof shortened by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
StepHypRef Expression
1 brdom2g 8745 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
21ex 413 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
3 reldom 8739 . . . . 5 Rel ≼
43brrelex1i 5643 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 f1f 6670 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
6 fdm 6609 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
7 vex 3436 . . . . . . . 8 𝑓 ∈ V
87dmex 7758 . . . . . . 7 dom 𝑓 ∈ V
96, 8eqeltrrdi 2848 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
105, 9syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110exlimiv 1933 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
124, 11pm5.21ni 379 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1312a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
142, 13pm2.61i 182 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074  dom cdm 5589  wf 6429  1-1wf1 6430  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fn 6436  df-f 6437  df-f1 6438  df-dom 8735
This theorem is referenced by:  brdomiOLD  8749  brdom  8750  f1dom3g  8755  f1dom2gOLD  8758  f1domg  8760  dom3d  8782  domdifsn  8841  fidomtri  9751  hashdom  14094  hashge3el3dif  14200  sizusglecusg  27830  erdsze2lem1  33165
  Copyright terms: Public domain W3C validator