MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Visualization version   GIF version

Theorem ordsucelsuc 7858
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 482 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐵)
2 ordelord 6417 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
31, 2jca 511 . 2 ((Ord 𝐵𝐴𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
4 simpl 482 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵)
5 ordsuc 7849 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
6 ordelord 6417 . . . . 5 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴)
7 ordsuc 7849 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
86, 7sylibr 234 . . . 4 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
95, 8sylanb 580 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
104, 9jca 511 . 2 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
11 ordsseleq 6424 . . . . . . . 8 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
127, 11sylanb 580 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1312ancoms 458 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1413adantl 481 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
15 ordsucss 7854 . . . . . . 7 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1615ad2antrl 727 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 → suc 𝐴𝐵))
17 sucssel 6490 . . . . . . 7 (𝐴 ∈ V → (suc 𝐴𝐵𝐴𝐵))
1817adantr 480 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵𝐴𝐵))
1916, 18impbid 212 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴𝐵))
20 sucexb 7840 . . . . . . 7 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
21 elsucg 6463 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2220, 21sylbi 217 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2322adantr 480 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2414, 19, 233bitr4d 311 . . . 4 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
2524ex 412 . . 3 (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
26 elex 3509 . . . . 5 (𝐴𝐵𝐴 ∈ V)
27 elex 3509 . . . . . 6 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2827, 20sylibr 234 . . . . 5 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
2926, 28pm5.21ni 377 . . . 4 𝐴 ∈ V → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
3029a1d 25 . . 3 𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
3125, 30pm2.61i 182 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
323, 10, 31pm5.21nd 801 1 (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  Ord word 6394  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  ordsucsssuc  7859  omsucelsucb  8514  oalimcl  8616  omlimcl  8634  pssnn  9234  cantnflt  9741  cantnfp1lem3  9749  ttrcltr  9785  ttrclss  9789  ttrclselem2  9795  r1pw  9914  r1pwALT  9915  rankelpr  9942  rankelop  9943  rankxplim3  9950  infpssrlem4  10375  axdc3lem2  10520  axdc3lem4  10522  grur1a  10888  nosupno  27766  noinfno  27781  bnj570  34881  bnj1001  34935
  Copyright terms: Public domain W3C validator