MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Visualization version   GIF version

Theorem ordsucelsuc 7517
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 486 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐵)
2 ordelord 6181 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
31, 2jca 515 . 2 ((Ord 𝐵𝐴𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
4 simpl 486 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵)
5 ordsuc 7509 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
6 ordelord 6181 . . . . 5 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴)
7 ordsuc 7509 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
86, 7sylibr 237 . . . 4 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
95, 8sylanb 584 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
104, 9jca 515 . 2 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
11 ordsseleq 6188 . . . . . . . 8 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
127, 11sylanb 584 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1312ancoms 462 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1413adantl 485 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
15 ordsucss 7513 . . . . . . 7 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1615ad2antrl 727 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 → suc 𝐴𝐵))
17 sucssel 6251 . . . . . . 7 (𝐴 ∈ V → (suc 𝐴𝐵𝐴𝐵))
1817adantr 484 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵𝐴𝐵))
1916, 18impbid 215 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴𝐵))
20 sucexb 7504 . . . . . . 7 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
21 elsucg 6226 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2220, 21sylbi 220 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2322adantr 484 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2414, 19, 233bitr4d 314 . . . 4 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
2524ex 416 . . 3 (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
26 elex 3459 . . . . 5 (𝐴𝐵𝐴 ∈ V)
27 elex 3459 . . . . . 6 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2827, 20sylibr 237 . . . . 5 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
2926, 28pm5.21ni 382 . . . 4 𝐴 ∈ V → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
3029a1d 25 . . 3 𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
3125, 30pm2.61i 185 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
323, 10, 31pm5.21nd 801 1 (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  Ord word 6158  suc csuc 6161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163  df-suc 6165
This theorem is referenced by:  ordsucsssuc  7518  omsucelsucb  8077  oalimcl  8169  omlimcl  8187  pssnn  8720  cantnflt  9119  cantnfp1lem3  9127  r1pw  9258  r1pwALT  9259  rankelpr  9286  rankelop  9287  rankxplim3  9294  infpssrlem4  9717  axdc3lem2  9862  axdc3lem4  9864  grur1a  10230  bnj570  32287  bnj1001  32341  nosupno  33316
  Copyright terms: Public domain W3C validator