Proof of Theorem ordsucelsuc
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . 3
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐵) |
2 | | ordelord 6273 |
. . 3
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) |
3 | 1, 2 | jca 511 |
. 2
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → (Ord 𝐵 ∧ Ord 𝐴)) |
4 | | simpl 482 |
. . 3
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵) |
5 | | ordsuc 7636 |
. . . 4
⊢ (Ord
𝐵 ↔ Ord suc 𝐵) |
6 | | ordelord 6273 |
. . . . 5
⊢ ((Ord suc
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴) |
7 | | ordsuc 7636 |
. . . . 5
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |
8 | 6, 7 | sylibr 233 |
. . . 4
⊢ ((Ord suc
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴) |
9 | 5, 8 | sylanb 580 |
. . 3
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴) |
10 | 4, 9 | jca 511 |
. 2
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴)) |
11 | | ordsseleq 6280 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
12 | 7, 11 | sylanb 580 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
13 | 12 | ancoms 458 |
. . . . . 6
⊢ ((Ord
𝐵 ∧ Ord 𝐴) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
14 | 13 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
15 | | ordsucss 7640 |
. . . . . . 7
⊢ (Ord
𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
16 | 15 | ad2antrl 724 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
17 | | sucssel 6343 |
. . . . . . 7
⊢ (𝐴 ∈ V → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
19 | 16, 18 | impbid 211 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
20 | | sucexb 7631 |
. . . . . . 7
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
21 | | elsucg 6318 |
. . . . . . 7
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
22 | 20, 21 | sylbi 216 |
. . . . . 6
⊢ (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
24 | 14, 19, 23 | 3bitr4d 310 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
25 | 24 | ex 412 |
. . 3
⊢ (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵))) |
26 | | elex 3440 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
27 | | elex 3440 |
. . . . . 6
⊢ (suc
𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V) |
28 | 27, 20 | sylibr 233 |
. . . . 5
⊢ (suc
𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) |
29 | 26, 28 | pm5.21ni 378 |
. . . 4
⊢ (¬
𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
30 | 29 | a1d 25 |
. . 3
⊢ (¬
𝐴 ∈ V → ((Ord
𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵))) |
31 | 25, 30 | pm2.61i 182 |
. 2
⊢ ((Ord
𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
32 | 3, 10, 31 | pm5.21nd 798 |
1
⊢ (Ord
𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |