Proof of Theorem ordsucelsuc
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐵) |
| 2 | | ordelord 6379 |
. . 3
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) |
| 3 | 1, 2 | jca 511 |
. 2
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → (Ord 𝐵 ∧ Ord 𝐴)) |
| 4 | | simpl 482 |
. . 3
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵) |
| 5 | | ordsuc 7812 |
. . . 4
⊢ (Ord
𝐵 ↔ Ord suc 𝐵) |
| 6 | | ordelord 6379 |
. . . . 5
⊢ ((Ord suc
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴) |
| 7 | | ordsuc 7812 |
. . . . 5
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |
| 8 | 6, 7 | sylibr 234 |
. . . 4
⊢ ((Ord suc
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴) |
| 9 | 5, 8 | sylanb 581 |
. . 3
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴) |
| 10 | 4, 9 | jca 511 |
. 2
⊢ ((Ord
𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴)) |
| 11 | | ordsseleq 6386 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 12 | 7, 11 | sylanb 581 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 13 | 12 | ancoms 458 |
. . . . . 6
⊢ ((Ord
𝐵 ∧ Ord 𝐴) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 14 | 13 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ⊆ 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 15 | | ordsucss 7817 |
. . . . . . 7
⊢ (Ord
𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 16 | 15 | ad2antrl 728 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 17 | | sucssel 6454 |
. . . . . . 7
⊢ (𝐴 ∈ V → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| 19 | 16, 18 | impbid 212 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
| 20 | | sucexb 7803 |
. . . . . . 7
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
| 21 | | elsucg 6427 |
. . . . . . 7
⊢ (suc
𝐴 ∈ V → (suc
𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 22 | 20, 21 | sylbi 217 |
. . . . . 6
⊢ (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵))) |
| 24 | 14, 19, 23 | 3bitr4d 311 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
| 25 | 24 | ex 412 |
. . 3
⊢ (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵))) |
| 26 | | elex 3485 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| 27 | | elex 3485 |
. . . . . 6
⊢ (suc
𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V) |
| 28 | 27, 20 | sylibr 234 |
. . . . 5
⊢ (suc
𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) |
| 29 | 26, 28 | pm5.21ni 377 |
. . . 4
⊢ (¬
𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
| 30 | 29 | a1d 25 |
. . 3
⊢ (¬
𝐴 ∈ V → ((Ord
𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵))) |
| 31 | 25, 30 | pm2.61i 182 |
. 2
⊢ ((Ord
𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |
| 32 | 3, 10, 31 | pm5.21nd 801 |
1
⊢ (Ord
𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |