MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Visualization version   GIF version

Theorem ordsucelsuc 7797
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 482 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐵)
2 ordelord 6354 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
31, 2jca 511 . 2 ((Ord 𝐵𝐴𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
4 simpl 482 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵)
5 ordsuc 7788 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
6 ordelord 6354 . . . . 5 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴)
7 ordsuc 7788 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
86, 7sylibr 234 . . . 4 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
95, 8sylanb 581 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
104, 9jca 511 . 2 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
11 ordsseleq 6361 . . . . . . . 8 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
127, 11sylanb 581 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1312ancoms 458 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1413adantl 481 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
15 ordsucss 7793 . . . . . . 7 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1615ad2antrl 728 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 → suc 𝐴𝐵))
17 sucssel 6429 . . . . . . 7 (𝐴 ∈ V → (suc 𝐴𝐵𝐴𝐵))
1817adantr 480 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵𝐴𝐵))
1916, 18impbid 212 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴𝐵))
20 sucexb 7780 . . . . . . 7 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
21 elsucg 6402 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2220, 21sylbi 217 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2322adantr 480 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2414, 19, 233bitr4d 311 . . . 4 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
2524ex 412 . . 3 (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
26 elex 3468 . . . . 5 (𝐴𝐵𝐴 ∈ V)
27 elex 3468 . . . . . 6 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2827, 20sylibr 234 . . . . 5 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
2926, 28pm5.21ni 377 . . . 4 𝐴 ∈ V → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
3029a1d 25 . . 3 𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
3125, 30pm2.61i 182 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
323, 10, 31pm5.21nd 801 1 (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  Ord word 6331  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by:  ordsucsssuc  7798  omsucelsucb  8426  oalimcl  8524  omlimcl  8542  pssnn  9132  cantnflt  9625  cantnfp1lem3  9633  ttrcltr  9669  ttrclss  9673  ttrclselem2  9679  r1pw  9798  r1pwALT  9799  rankelpr  9826  rankelop  9827  rankxplim3  9834  infpssrlem4  10259  axdc3lem2  10404  axdc3lem4  10406  grur1a  10772  nosupno  27615  noinfno  27630  bnj570  34895  bnj1001  34949
  Copyright terms: Public domain W3C validator