| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pwALT | Structured version Visualization version GIF version | ||
| Description: Alternate shorter proof of r1pw 9805 based on the additional axioms ax-reg 9552 and ax-inf2 9601. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| r1pwALT | ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘𝐵))) | |
| 2 | pweq 4580 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 3 | 2 | eleq1d 2814 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 4 | 1, 3 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 5 | 4 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) ↔ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))) |
| 6 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | rankr1a 9796 | . . . . . 6 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝑥) ∈ 𝐵)) |
| 8 | eloni 6345 | . . . . . . 7 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 9 | ordsucelsuc 7800 | . . . . . . 7 ⊢ (Ord 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ On → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
| 11 | 7, 10 | bitrd 279 | . . . . 5 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
| 12 | 6 | rankpw 9803 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
| 13 | 12 | eleq1i 2820 | . . . . 5 ⊢ ((rank‘𝒫 𝑥) ∈ suc 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵) |
| 14 | 11, 13 | bitr4di 289 | . . . 4 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 15 | onsuc 7790 | . . . . 5 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
| 16 | 6 | pwex 5338 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V |
| 17 | 16 | rankr1a 9796 | . . . . 5 ⊢ (suc 𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 18 | 15, 17 | syl 17 | . . . 4 ⊢ (𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 19 | 14, 18 | bitr4d 282 | . . 3 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) |
| 20 | 5, 19 | vtoclg 3523 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 21 | elex 3471 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ V) | |
| 22 | elex 3471 | . . . . 5 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ V) | |
| 23 | pwexb 7745 | . . . . 5 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 24 | 22, 23 | sylibr 234 | . . . 4 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
| 25 | 21, 24 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 26 | 25 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 27 | 20, 26 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 Ord word 6334 Oncon0 6335 suc csuc 6337 ‘cfv 6514 𝑅1cr1 9722 rankcrnk 9723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |