Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1pwALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of r1pw 9461 based on the additional axioms ax-reg 9208 and ax-inf2 9256. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
r1pwALT | ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘𝐵))) | |
2 | pweq 4529 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
3 | 2 | eleq1d 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
4 | 1, 3 | bibi12d 349 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
5 | 4 | imbi2d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) ↔ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))) |
6 | vex 3412 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | rankr1a 9452 | . . . . . 6 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝑥) ∈ 𝐵)) |
8 | eloni 6223 | . . . . . . 7 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
9 | ordsucelsuc 7601 | . . . . . . 7 ⊢ (Ord 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ On → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
11 | 7, 10 | bitrd 282 | . . . . 5 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
12 | 6 | rankpw 9459 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
13 | 12 | eleq1i 2828 | . . . . 5 ⊢ ((rank‘𝒫 𝑥) ∈ suc 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵) |
14 | 11, 13 | bitr4di 292 | . . . 4 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
15 | suceloni 7592 | . . . . 5 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
16 | 6 | pwex 5273 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V |
17 | 16 | rankr1a 9452 | . . . . 5 ⊢ (suc 𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
18 | 15, 17 | syl 17 | . . . 4 ⊢ (𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
19 | 14, 18 | bitr4d 285 | . . 3 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) |
20 | 5, 19 | vtoclg 3481 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
21 | elex 3426 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ V) | |
22 | elex 3426 | . . . . 5 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ V) | |
23 | pwexb 7551 | . . . . 5 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
24 | 22, 23 | sylibr 237 | . . . 4 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
25 | 21, 24 | pm5.21ni 382 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
26 | 25 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
27 | 20, 26 | pm2.61i 185 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 Vcvv 3408 𝒫 cpw 4513 Ord word 6212 Oncon0 6213 suc csuc 6215 ‘cfv 6380 𝑅1cr1 9378 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-reg 9208 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-r1 9380 df-rank 9381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |