MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwALT Structured version   Visualization version   GIF version

Theorem r1pwALT 9806
Description: Alternate shorter proof of r1pw 9805 based on the additional axioms ax-reg 9552 and ax-inf2 9601. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r1pwALT (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))

Proof of Theorem r1pwALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ (𝑅1𝐵)))
2 pweq 4580 . . . . . 6 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
32eleq1d 2814 . . . . 5 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
41, 3bibi12d 345 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ (𝑅1𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
54imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝑥 ∈ (𝑅1𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) ↔ (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))))
6 vex 3454 . . . . . . 7 𝑥 ∈ V
76rankr1a 9796 . . . . . 6 (𝐵 ∈ On → (𝑥 ∈ (𝑅1𝐵) ↔ (rank‘𝑥) ∈ 𝐵))
8 eloni 6345 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
9 ordsucelsuc 7800 . . . . . . 7 (Ord 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵))
108, 9syl 17 . . . . . 6 (𝐵 ∈ On → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵))
117, 10bitrd 279 . . . . 5 (𝐵 ∈ On → (𝑥 ∈ (𝑅1𝐵) ↔ suc (rank‘𝑥) ∈ suc 𝐵))
126rankpw 9803 . . . . . 6 (rank‘𝒫 𝑥) = suc (rank‘𝑥)
1312eleq1i 2820 . . . . 5 ((rank‘𝒫 𝑥) ∈ suc 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)
1411, 13bitr4di 289 . . . 4 (𝐵 ∈ On → (𝑥 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵))
15 onsuc 7790 . . . . 5 (𝐵 ∈ On → suc 𝐵 ∈ On)
166pwex 5338 . . . . . 6 𝒫 𝑥 ∈ V
1716rankr1a 9796 . . . . 5 (suc 𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵))
1815, 17syl 17 . . . 4 (𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵))
1914, 18bitr4d 282 . . 3 (𝐵 ∈ On → (𝑥 ∈ (𝑅1𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)))
205, 19vtoclg 3523 . 2 (𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
21 elex 3471 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ V)
22 elex 3471 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ V)
23 pwexb 7745 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
2422, 23sylibr 234 . . . 4 (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V)
2521, 24pm5.21ni 377 . . 3 𝐴 ∈ V → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
2625a1d 25 . 2 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))
2720, 26pm2.61i 182 1 (𝐵 ∈ On → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566  Ord word 6334  Oncon0 6335  suc csuc 6337  cfv 6514  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator