![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1pwALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of r1pw 9120 based on the additional axioms ax-reg 8902 and ax-inf2 8950. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
r1pwALT | ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2870 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘𝐵))) | |
2 | pweq 4456 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
3 | 2 | eleq1d 2867 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
4 | 1, 3 | bibi12d 347 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
5 | 4 | imbi2d 342 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) ↔ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))) |
6 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | rankr1a 9111 | . . . . . 6 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝑥) ∈ 𝐵)) |
8 | eloni 6076 | . . . . . . 7 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
9 | ordsucelsuc 7393 | . . . . . . 7 ⊢ (Ord 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ On → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
11 | 7, 10 | bitrd 280 | . . . . 5 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
12 | 6 | rankpw 9118 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
13 | 12 | eleq1i 2873 | . . . . 5 ⊢ ((rank‘𝒫 𝑥) ∈ suc 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵) |
14 | 11, 13 | syl6bbr 290 | . . . 4 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
15 | suceloni 7384 | . . . . 5 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
16 | 6 | pwex 5172 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V |
17 | 16 | rankr1a 9111 | . . . . 5 ⊢ (suc 𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
18 | 15, 17 | syl 17 | . . . 4 ⊢ (𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
19 | 14, 18 | bitr4d 283 | . . 3 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) |
20 | 5, 19 | vtoclg 3510 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
21 | elex 3455 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ V) | |
22 | elex 3455 | . . . . 5 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ V) | |
23 | pwexb 7345 | . . . . 5 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
24 | 22, 23 | sylibr 235 | . . . 4 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
25 | 21, 24 | pm5.21ni 379 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
26 | 25 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
27 | 20, 26 | pm2.61i 183 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 Vcvv 3437 𝒫 cpw 4453 Ord word 6065 Oncon0 6066 suc csuc 6068 ‘cfv 6225 𝑅1cr1 9037 rankcrnk 9038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-reg 8902 ax-inf2 8950 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-r1 9039 df-rank 9040 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |