| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pwALT | Structured version Visualization version GIF version | ||
| Description: Alternate shorter proof of r1pw 9774 based on the additional axioms ax-reg 9521 and ax-inf2 9570. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| r1pwALT | ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘𝐵))) | |
| 2 | pweq 4573 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 3 | 2 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 4 | 1, 3 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 5 | 4 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) ↔ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))))) |
| 6 | vex 3448 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | rankr1a 9765 | . . . . . 6 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝑥) ∈ 𝐵)) |
| 8 | eloni 6330 | . . . . . . 7 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 9 | ordsucelsuc 7777 | . . . . . . 7 ⊢ (Ord 𝐵 → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ On → ((rank‘𝑥) ∈ 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
| 11 | 7, 10 | bitrd 279 | . . . . 5 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ suc (rank‘𝑥) ∈ suc 𝐵)) |
| 12 | 6 | rankpw 9772 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
| 13 | 12 | eleq1i 2819 | . . . . 5 ⊢ ((rank‘𝒫 𝑥) ∈ suc 𝐵 ↔ suc (rank‘𝑥) ∈ suc 𝐵) |
| 14 | 11, 13 | bitr4di 289 | . . . 4 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 15 | onsuc 7767 | . . . . 5 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
| 16 | 6 | pwex 5330 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V |
| 17 | 16 | rankr1a 9765 | . . . . 5 ⊢ (suc 𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 18 | 15, 17 | syl 17 | . . . 4 ⊢ (𝐵 ∈ On → (𝒫 𝑥 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝑥) ∈ suc 𝐵)) |
| 19 | 14, 18 | bitr4d 282 | . . 3 ⊢ (𝐵 ∈ On → (𝑥 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝐵))) |
| 20 | 5, 19 | vtoclg 3517 | . 2 ⊢ (𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 21 | elex 3465 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ V) | |
| 22 | elex 3465 | . . . . 5 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ V) | |
| 23 | pwexb 7722 | . . . . 5 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 24 | 22, 23 | sylibr 234 | . . . 4 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
| 25 | 21, 24 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| 26 | 25 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵)))) |
| 27 | 20, 26 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 Ord word 6319 Oncon0 6320 suc csuc 6322 ‘cfv 6499 𝑅1cr1 9691 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |