Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsssuc2 | Structured version Visualization version GIF version |
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsssuc2 | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 6274 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | biimprd 247 | . . . 4 ⊢ (𝐴 ∈ V → (Ord 𝐴 → 𝐴 ∈ On)) |
3 | 2 | anim1d 611 | . . 3 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On))) |
4 | onsssuc 6353 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
5 | 3, 4 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
6 | annim 404 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V)) | |
7 | ssexg 5247 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On) → 𝐴 ∈ V) | |
8 | 7 | ex 413 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
9 | elex 3450 | . . . . . . 7 ⊢ (𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) | |
10 | 9 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
11 | 8, 10 | pm5.21ni 379 | . . . . 5 ⊢ (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
12 | 6, 11 | sylbi 216 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
13 | 12 | expcom 414 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
14 | 13 | adantld 491 | . 2 ⊢ (¬ 𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 Ord word 6265 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: ordunisuc2 7691 |
Copyright terms: Public domain | W3C validator |