MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Structured version   Visualization version   GIF version

Theorem ordsssuc2 6474
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 6391 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
21biimprd 248 . . . 4 (𝐴 ∈ V → (Ord 𝐴𝐴 ∈ On))
32anim1d 611 . . 3 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)))
4 onsssuc 6473 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
53, 4syl6 35 . 2 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
6 annim 403 . . . . 5 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V))
7 ssexg 5322 . . . . . . 7 ((𝐴𝐵𝐵 ∈ On) → 𝐴 ∈ V)
87ex 412 . . . . . 6 (𝐴𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
9 elex 3500 . . . . . . 7 (𝐴 ∈ suc 𝐵𝐴 ∈ V)
109a1d 25 . . . . . 6 (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
118, 10pm5.21ni 377 . . . . 5 (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
126, 11sylbi 217 . . . 4 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
1312expcom 413 . . 3 𝐴 ∈ V → (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ suc 𝐵)))
1413adantld 490 . 2 𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
155, 14pm2.61i 182 1 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107  Vcvv 3479  wss 3950  Ord word 6382  Oncon0 6383  suc csuc 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387  df-suc 6389
This theorem is referenced by:  ordunisuc2  7866
  Copyright terms: Public domain W3C validator