MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Structured version   Visualization version   GIF version

Theorem ordsssuc2 6301
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 6221 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
21biimprd 251 . . . 4 (𝐴 ∈ V → (Ord 𝐴𝐴 ∈ On))
32anim1d 614 . . 3 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)))
4 onsssuc 6300 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
53, 4syl6 35 . 2 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
6 annim 407 . . . . 5 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V))
7 ssexg 5216 . . . . . . 7 ((𝐴𝐵𝐵 ∈ On) → 𝐴 ∈ V)
87ex 416 . . . . . 6 (𝐴𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
9 elex 3426 . . . . . . 7 (𝐴 ∈ suc 𝐵𝐴 ∈ V)
109a1d 25 . . . . . 6 (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
118, 10pm5.21ni 382 . . . . 5 (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
126, 11sylbi 220 . . . 4 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
1312expcom 417 . . 3 𝐴 ∈ V → (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ suc 𝐵)))
1413adantld 494 . 2 𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
155, 14pm2.61i 185 1 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2110  Vcvv 3408  wss 3866  Ord word 6212  Oncon0 6213  suc csuc 6215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-on 6217  df-suc 6219
This theorem is referenced by:  ordunisuc2  7623
  Copyright terms: Public domain W3C validator