Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsssuc2 | Structured version Visualization version GIF version |
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsssuc2 | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 6221 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | biimprd 251 | . . . 4 ⊢ (𝐴 ∈ V → (Ord 𝐴 → 𝐴 ∈ On)) |
3 | 2 | anim1d 614 | . . 3 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On))) |
4 | onsssuc 6300 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
5 | 3, 4 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
6 | annim 407 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V)) | |
7 | ssexg 5216 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On) → 𝐴 ∈ V) | |
8 | 7 | ex 416 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
9 | elex 3426 | . . . . . . 7 ⊢ (𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) | |
10 | 9 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
11 | 8, 10 | pm5.21ni 382 | . . . . 5 ⊢ (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
12 | 6, 11 | sylbi 220 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
13 | 12 | expcom 417 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
14 | 13 | adantld 494 | . 2 ⊢ (¬ 𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
15 | 5, 14 | pm2.61i 185 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 Ord word 6212 Oncon0 6213 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-suc 6219 |
This theorem is referenced by: ordunisuc2 7623 |
Copyright terms: Public domain | W3C validator |