![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsssuc2 | Structured version Visualization version GIF version |
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ordsssuc2 | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 6372 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | biimprd 247 | . . . 4 ⊢ (𝐴 ∈ V → (Ord 𝐴 → 𝐴 ∈ On)) |
3 | 2 | anim1d 610 | . . 3 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On))) |
4 | onsssuc 6454 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
5 | 3, 4 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
6 | annim 403 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V)) | |
7 | ssexg 5323 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On) → 𝐴 ∈ V) | |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
9 | elex 3492 | . . . . . . 7 ⊢ (𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) | |
10 | 9 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
11 | 8, 10 | pm5.21ni 377 | . . . . 5 ⊢ (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
12 | 6, 11 | sylbi 216 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
13 | 12 | expcom 413 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
14 | 13 | adantld 490 | . 2 ⊢ (¬ 𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 Ord word 6363 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: ordunisuc2 7837 |
Copyright terms: Public domain | W3C validator |