MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Structured version   Visualization version   GIF version

Theorem ordsssuc2 6354
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 6274 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
21biimprd 247 . . . 4 (𝐴 ∈ V → (Ord 𝐴𝐴 ∈ On))
32anim1d 611 . . 3 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)))
4 onsssuc 6353 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
53, 4syl6 35 . 2 (𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
6 annim 404 . . . . 5 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V))
7 ssexg 5247 . . . . . . 7 ((𝐴𝐵𝐵 ∈ On) → 𝐴 ∈ V)
87ex 413 . . . . . 6 (𝐴𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
9 elex 3450 . . . . . . 7 (𝐴 ∈ suc 𝐵𝐴 ∈ V)
109a1d 25 . . . . . 6 (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V))
118, 10pm5.21ni 379 . . . . 5 (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
126, 11sylbi 216 . . . 4 ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴𝐵𝐴 ∈ suc 𝐵))
1312expcom 414 . . 3 𝐴 ∈ V → (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ suc 𝐵)))
1413adantld 491 . 2 𝐴 ∈ V → ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵)))
155, 14pm2.61i 182 1 ((Ord 𝐴𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  wss 3887  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  ordunisuc2  7691
  Copyright terms: Public domain W3C validator