| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsssuc2 | Structured version Visualization version GIF version | ||
| Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordsssuc2 | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 6365 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | 1 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ V → (Ord 𝐴 → 𝐴 ∈ On)) |
| 3 | 2 | anim1d 611 | . . 3 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On))) |
| 4 | onsssuc 6449 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 5 | 3, 4 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
| 6 | annim 403 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) ↔ ¬ (𝐵 ∈ On → 𝐴 ∈ V)) | |
| 7 | ssexg 5298 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On) → 𝐴 ∈ V) | |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
| 9 | elex 3485 | . . . . . . 7 ⊢ (𝐴 ∈ suc 𝐵 → 𝐴 ∈ V) | |
| 10 | 9 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ suc 𝐵 → (𝐵 ∈ On → 𝐴 ∈ V)) |
| 11 | 8, 10 | pm5.21ni 377 | . . . . 5 ⊢ (¬ (𝐵 ∈ On → 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| 12 | 6, 11 | sylbi 217 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ¬ 𝐴 ∈ V) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| 13 | 12 | expcom 413 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
| 14 | 13 | adantld 490 | . 2 ⊢ (¬ 𝐴 ∈ V → ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵))) |
| 15 | 5, 14 | pm2.61i 182 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: ordunisuc2 7844 |
| Copyright terms: Public domain | W3C validator |