MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poss Structured version   Visualization version   GIF version

Theorem poss 5496
Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
poss (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))

Proof of Theorem poss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3983 . . 3 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2 ss2ralv 3985 . . . 4 (𝐴𝐵 → (∀𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
32ralimdv 3103 . . 3 (𝐴𝐵 → (∀𝑥𝐴𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
41, 3syld 47 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
5 df-po 5494 . 2 (𝑅 Po 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 df-po 5494 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
74, 5, 63imtr4g 295 1 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3063  wss 3883   class class class wbr 5070   Po wpo 5492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-po 5494
This theorem is referenced by:  poeq2  5498  soss  5514  frpomin  6228  fprlem1  8087  swoso  8489  frfi  8989  wemapsolem  9239  fin23lem27  10015  zorn2lem6  10188  xrge0iifiso  31787  incsequz2  35834
  Copyright terms: Public domain W3C validator