| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | poeq2 5596 | . . . 4
⊢ (𝑥 = ∅ → (𝑅 Po 𝑥 ↔ 𝑅 Po ∅)) | 
| 2 |  | freq2 5653 | . . . 4
⊢ (𝑥 = ∅ → (𝑅 Fr 𝑥 ↔ 𝑅 Fr ∅)) | 
| 3 | 1, 2 | imbi12d 344 | . . 3
⊢ (𝑥 = ∅ → ((𝑅 Po 𝑥 → 𝑅 Fr 𝑥) ↔ (𝑅 Po ∅ → 𝑅 Fr ∅))) | 
| 4 |  | poeq2 5596 | . . . 4
⊢ (𝑥 = 𝑦 → (𝑅 Po 𝑥 ↔ 𝑅 Po 𝑦)) | 
| 5 |  | freq2 5653 | . . . 4
⊢ (𝑥 = 𝑦 → (𝑅 Fr 𝑥 ↔ 𝑅 Fr 𝑦)) | 
| 6 | 4, 5 | imbi12d 344 | . . 3
⊢ (𝑥 = 𝑦 → ((𝑅 Po 𝑥 → 𝑅 Fr 𝑥) ↔ (𝑅 Po 𝑦 → 𝑅 Fr 𝑦))) | 
| 7 |  | poeq2 5596 | . . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑤}) → (𝑅 Po 𝑥 ↔ 𝑅 Po (𝑦 ∪ {𝑤}))) | 
| 8 |  | freq2 5653 | . . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑤}) → (𝑅 Fr 𝑥 ↔ 𝑅 Fr (𝑦 ∪ {𝑤}))) | 
| 9 | 7, 8 | imbi12d 344 | . . 3
⊢ (𝑥 = (𝑦 ∪ {𝑤}) → ((𝑅 Po 𝑥 → 𝑅 Fr 𝑥) ↔ (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Fr (𝑦 ∪ {𝑤})))) | 
| 10 |  | poeq2 5596 | . . . 4
⊢ (𝑥 = 𝐴 → (𝑅 Po 𝑥 ↔ 𝑅 Po 𝐴)) | 
| 11 |  | freq2 5653 | . . . 4
⊢ (𝑥 = 𝐴 → (𝑅 Fr 𝑥 ↔ 𝑅 Fr 𝐴)) | 
| 12 | 10, 11 | imbi12d 344 | . . 3
⊢ (𝑥 = 𝐴 → ((𝑅 Po 𝑥 → 𝑅 Fr 𝑥) ↔ (𝑅 Po 𝐴 → 𝑅 Fr 𝐴))) | 
| 13 |  | fr0 5663 | . . . 4
⊢ 𝑅 Fr ∅ | 
| 14 | 13 | a1i 11 | . . 3
⊢ (𝑅 Po ∅ → 𝑅 Fr ∅) | 
| 15 |  | ssun1 4178 | . . . . . . 7
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑤}) | 
| 16 |  | poss 5594 | . . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑤}) → (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Po 𝑦)) | 
| 17 | 15, 16 | ax-mp 5 | . . . . . 6
⊢ (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Po 𝑦) | 
| 18 | 17 | imim1i 63 | . . . . 5
⊢ ((𝑅 Po 𝑦 → 𝑅 Fr 𝑦) → (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Fr 𝑦)) | 
| 19 |  | uncom 4158 | . . . . . . . . . . . 12
⊢ (𝑦 ∪ {𝑤}) = ({𝑤} ∪ 𝑦) | 
| 20 | 19 | sseq2i 4013 | . . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝑦 ∪ {𝑤}) ↔ 𝑥 ⊆ ({𝑤} ∪ 𝑦)) | 
| 21 |  | ssundif 4488 | . . . . . . . . . . 11
⊢ (𝑥 ⊆ ({𝑤} ∪ 𝑦) ↔ (𝑥 ∖ {𝑤}) ⊆ 𝑦) | 
| 22 | 20, 21 | bitri 275 | . . . . . . . . . 10
⊢ (𝑥 ⊆ (𝑦 ∪ {𝑤}) ↔ (𝑥 ∖ {𝑤}) ⊆ 𝑦) | 
| 23 | 22 | anbi1i 624 | . . . . . . . . 9
⊢ ((𝑥 ⊆ (𝑦 ∪ {𝑤}) ∧ 𝑥 ≠ ∅) ↔ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) | 
| 24 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑣𝑅𝑤 ↔ 𝑧𝑅𝑤)) | 
| 25 | 24 | cbvrexvw 3238 | . . . . . . . . . . . . 13
⊢
(∃𝑣 ∈
𝑥 𝑣𝑅𝑤 ↔ ∃𝑧 ∈ 𝑥 𝑧𝑅𝑤) | 
| 26 |  | simpllr 776 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑅 Fr 𝑦) | 
| 27 |  | simplrl 777 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → (𝑥 ∖ {𝑤}) ⊆ 𝑦) | 
| 28 |  | poss 5594 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ⊆ (𝑦 ∪ {𝑤}) → (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Po 𝑥)) | 
| 29 | 28 | impcom 407 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑥 ⊆ (𝑦 ∪ {𝑤})) → 𝑅 Po 𝑥) | 
| 30 | 22, 29 | sylan2br 595 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ (𝑥 ∖ {𝑤}) ⊆ 𝑦) → 𝑅 Po 𝑥) | 
| 31 | 30 | ad2ant2r 747 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → 𝑅 Po 𝑥) | 
| 32 |  | simpr1 1195 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑧 ∈ 𝑥) | 
| 33 |  | simpr2 1196 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑧𝑅𝑤) | 
| 34 |  | poirr 5604 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 Po 𝑥 ∧ 𝑤 ∈ 𝑥) → ¬ 𝑤𝑅𝑤) | 
| 35 | 34 | 3ad2antr3 1191 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → ¬ 𝑤𝑅𝑤) | 
| 36 |  | nbrne2 5163 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧𝑅𝑤 ∧ ¬ 𝑤𝑅𝑤) → 𝑧 ≠ 𝑤) | 
| 37 | 33, 35, 36 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑧 ≠ 𝑤) | 
| 38 |  | eldifsn 4786 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (𝑥 ∖ {𝑤}) ↔ (𝑧 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤)) | 
| 39 | 32, 37, 38 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑧 ∈ (𝑥 ∖ {𝑤})) | 
| 40 | 31, 39 | sylan 580 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → 𝑧 ∈ (𝑥 ∖ {𝑤})) | 
| 41 | 40 | ne0d 4342 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → (𝑥 ∖ {𝑤}) ≠ ∅) | 
| 42 |  | difss 4136 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∖ {𝑤}) ⊆ 𝑥 | 
| 43 |  | vex 3484 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V | 
| 44 | 43 | difexi 5330 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∖ {𝑤}) ∈ V | 
| 45 |  | fri 5642 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∖ {𝑤}) ∈ V ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ (𝑥 ∖ {𝑤}) ≠ ∅)) → ∃𝑢 ∈ (𝑥 ∖ {𝑤})∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢) | 
| 46 | 44, 45 | mpanl1 700 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 Fr 𝑦 ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ (𝑥 ∖ {𝑤}) ≠ ∅)) → ∃𝑢 ∈ (𝑥 ∖ {𝑤})∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢) | 
| 47 |  | ssrexv 4053 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∖ {𝑤}) ⊆ 𝑥 → (∃𝑢 ∈ (𝑥 ∖ {𝑤})∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢)) | 
| 48 | 42, 46, 47 | mpsyl 68 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Fr 𝑦 ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ (𝑥 ∖ {𝑤}) ≠ ∅)) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢) | 
| 49 | 26, 27, 41, 48 | syl12anc 837 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢) | 
| 50 |  | breq1 5146 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 𝑧 → (𝑣𝑅𝑢 ↔ 𝑧𝑅𝑢)) | 
| 51 | 50 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑧 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑧𝑅𝑢)) | 
| 52 | 51 | rspcv 3618 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ (𝑥 ∖ {𝑤}) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ¬ 𝑧𝑅𝑢)) | 
| 53 | 39, 52 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ¬ 𝑧𝑅𝑢)) | 
| 54 | 53 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ¬ 𝑧𝑅𝑢)) | 
| 55 |  | simplr2 1217 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → 𝑧𝑅𝑤) | 
| 56 |  | simpll 767 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → 𝑅 Po 𝑥) | 
| 57 |  | simplr1 1216 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → 𝑧 ∈ 𝑥) | 
| 58 |  | simplr3 1218 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → 𝑤 ∈ 𝑥) | 
| 59 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → 𝑢 ∈ 𝑥) | 
| 60 |  | potr 5605 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ∧ 𝑢 ∈ 𝑥)) → ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑢) → 𝑧𝑅𝑢)) | 
| 61 | 56, 57, 58, 59, 60 | syl13anc 1374 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑢) → 𝑧𝑅𝑢)) | 
| 62 | 55, 61 | mpand 695 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (𝑤𝑅𝑢 → 𝑧𝑅𝑢)) | 
| 63 | 62 | con3d 152 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (¬ 𝑧𝑅𝑢 → ¬ 𝑤𝑅𝑢)) | 
| 64 |  | vex 3484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑤 ∈ V | 
| 65 |  | breq1 5146 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑤 → (𝑣𝑅𝑢 ↔ 𝑤𝑅𝑢)) | 
| 66 | 65 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = 𝑤 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑤𝑅𝑢)) | 
| 67 | 64, 66 | ralsn 4681 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑣 ∈
{𝑤} ¬ 𝑣𝑅𝑢 ↔ ¬ 𝑤𝑅𝑢) | 
| 68 | 63, 67 | imbitrrdi 252 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (¬ 𝑧𝑅𝑢 → ∀𝑣 ∈ {𝑤} ¬ 𝑣𝑅𝑢)) | 
| 69 | 54, 68 | syld 47 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∀𝑣 ∈ {𝑤} ¬ 𝑣𝑅𝑢)) | 
| 70 |  | ralun 4198 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑣 ∈
(𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 ∧ ∀𝑣 ∈ {𝑤} ¬ 𝑣𝑅𝑢) → ∀𝑣 ∈ ((𝑥 ∖ {𝑤}) ∪ {𝑤}) ¬ 𝑣𝑅𝑢) | 
| 71 | 70 | ex 412 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑣 ∈
(𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → (∀𝑣 ∈ {𝑤} ¬ 𝑣𝑅𝑢 → ∀𝑣 ∈ ((𝑥 ∖ {𝑤}) ∪ {𝑤}) ¬ 𝑣𝑅𝑢)) | 
| 72 | 69, 71 | sylcom 30 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∀𝑣 ∈ ((𝑥 ∖ {𝑤}) ∪ {𝑤}) ¬ 𝑣𝑅𝑢)) | 
| 73 |  | difsnid 4810 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ 𝑥 → ((𝑥 ∖ {𝑤}) ∪ {𝑤}) = 𝑥) | 
| 74 | 73 | raleqdv 3326 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ 𝑥 → (∀𝑣 ∈ ((𝑥 ∖ {𝑤}) ∪ {𝑤}) ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 75 | 58, 74 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (∀𝑣 ∈ ((𝑥 ∖ {𝑤}) ∪ {𝑤}) ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 76 | 72, 75 | sylibd 239 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) ∧ 𝑢 ∈ 𝑥) → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 77 | 76 | reximdva 3168 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Po 𝑥 ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → (∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 78 | 31, 77 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → (∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 79 | 49, 78 | mpd 15 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) ∧ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑤 ∧ 𝑤 ∈ 𝑥)) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢) | 
| 80 | 79 | 3exp2 1355 | . . . . . . . . . . . . . 14
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → (𝑧 ∈ 𝑥 → (𝑧𝑅𝑤 → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)))) | 
| 81 | 80 | rexlimdv 3153 | . . . . . . . . . . . . 13
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → (∃𝑧 ∈ 𝑥 𝑧𝑅𝑤 → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 82 | 25, 81 | biimtrid 242 | . . . . . . . . . . . 12
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → (∃𝑣 ∈ 𝑥 𝑣𝑅𝑤 → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 83 |  | ralnex 3072 | . . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
𝑥 ¬ 𝑣𝑅𝑤 ↔ ¬ ∃𝑣 ∈ 𝑥 𝑣𝑅𝑤) | 
| 84 |  | breq2 5147 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑤 → (𝑣𝑅𝑢 ↔ 𝑣𝑅𝑤)) | 
| 85 | 84 | notbid 318 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑤 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝑤)) | 
| 86 | 85 | ralbidv 3178 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑤 → (∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑤)) | 
| 87 | 86 | rspcev 3622 | . . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑤) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢) | 
| 88 | 87 | expcom 413 | . . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
𝑥 ¬ 𝑣𝑅𝑤 → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 89 | 83, 88 | sylbir 235 | . . . . . . . . . . . 12
⊢ (¬
∃𝑣 ∈ 𝑥 𝑣𝑅𝑤 → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 90 | 82, 89 | pm2.61d1 180 | . . . . . . . . . . 11
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → (𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 91 |  | difsn 4798 | . . . . . . . . . . . 12
⊢ (¬
𝑤 ∈ 𝑥 → (𝑥 ∖ {𝑤}) = 𝑥) | 
| 92 | 48 | expr 456 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 Fr 𝑦 ∧ (𝑥 ∖ {𝑤}) ⊆ 𝑦) → ((𝑥 ∖ {𝑤}) ≠ ∅ → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢)) | 
| 93 |  | neeq1 3003 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∖ {𝑤}) = 𝑥 → ((𝑥 ∖ {𝑤}) ≠ ∅ ↔ 𝑥 ≠ ∅)) | 
| 94 |  | raleq 3323 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∖ {𝑤}) = 𝑥 → (∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 95 | 94 | rexbidv 3179 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∖ {𝑤}) = 𝑥 → (∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢 ↔ ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 96 | 93, 95 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∖ {𝑤}) = 𝑥 → (((𝑥 ∖ {𝑤}) ≠ ∅ → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ (𝑥 ∖ {𝑤}) ¬ 𝑣𝑅𝑢) ↔ (𝑥 ≠ ∅ → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 97 | 92, 96 | syl5ibcom 245 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 Fr 𝑦 ∧ (𝑥 ∖ {𝑤}) ⊆ 𝑦) → ((𝑥 ∖ {𝑤}) = 𝑥 → (𝑥 ≠ ∅ → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 98 | 97 | com23 86 | . . . . . . . . . . . . . 14
⊢ ((𝑅 Fr 𝑦 ∧ (𝑥 ∖ {𝑤}) ⊆ 𝑦) → (𝑥 ≠ ∅ → ((𝑥 ∖ {𝑤}) = 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 99 | 98 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ (𝑥 ∖ {𝑤}) ⊆ 𝑦) → (𝑥 ≠ ∅ → ((𝑥 ∖ {𝑤}) = 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢))) | 
| 100 | 99 | impr 454 | . . . . . . . . . . . 12
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {𝑤}) = 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 101 | 91, 100 | syl5 34 | . . . . . . . . . . 11
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → (¬ 𝑤 ∈ 𝑥 → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 102 | 90, 101 | pm2.61d 179 | . . . . . . . . . 10
⊢ (((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) ∧ ((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅)) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢) | 
| 103 | 102 | ex 412 | . . . . . . . . 9
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) → (((𝑥 ∖ {𝑤}) ⊆ 𝑦 ∧ 𝑥 ≠ ∅) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 104 | 23, 103 | biimtrid 242 | . . . . . . . 8
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) → ((𝑥 ⊆ (𝑦 ∪ {𝑤}) ∧ 𝑥 ≠ ∅) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 105 | 104 | alrimiv 1927 | . . . . . . 7
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) → ∀𝑥((𝑥 ⊆ (𝑦 ∪ {𝑤}) ∧ 𝑥 ≠ ∅) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 106 |  | df-fr 5637 | . . . . . . 7
⊢ (𝑅 Fr (𝑦 ∪ {𝑤}) ↔ ∀𝑥((𝑥 ⊆ (𝑦 ∪ {𝑤}) ∧ 𝑥 ≠ ∅) → ∃𝑢 ∈ 𝑥 ∀𝑣 ∈ 𝑥 ¬ 𝑣𝑅𝑢)) | 
| 107 | 105, 106 | sylibr 234 | . . . . . 6
⊢ ((𝑅 Po (𝑦 ∪ {𝑤}) ∧ 𝑅 Fr 𝑦) → 𝑅 Fr (𝑦 ∪ {𝑤})) | 
| 108 | 107 | ex 412 | . . . . 5
⊢ (𝑅 Po (𝑦 ∪ {𝑤}) → (𝑅 Fr 𝑦 → 𝑅 Fr (𝑦 ∪ {𝑤}))) | 
| 109 | 18, 108 | sylcom 30 | . . . 4
⊢ ((𝑅 Po 𝑦 → 𝑅 Fr 𝑦) → (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Fr (𝑦 ∪ {𝑤}))) | 
| 110 | 109 | a1i 11 | . . 3
⊢ (𝑦 ∈ Fin → ((𝑅 Po 𝑦 → 𝑅 Fr 𝑦) → (𝑅 Po (𝑦 ∪ {𝑤}) → 𝑅 Fr (𝑦 ∪ {𝑤})))) | 
| 111 | 3, 6, 9, 12, 14, 110 | findcard2 9204 | . 2
⊢ (𝐴 ∈ Fin → (𝑅 Po 𝐴 → 𝑅 Fr 𝐴)) | 
| 112 | 111 | impcom 407 | 1
⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) |