Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version |
Description: Deduction version of prssi 4760: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 4760 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3892 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 |
This theorem is referenced by: fpr2g 7119 f1prex 7188 fveqf1o 7207 fr3nr 7654 en2eqpr 9809 en2eleq 9810 r0weon 9814 wuncval2 10549 nehash2 14233 1idssfct 16430 basprssdmsets 16970 mrcun 17376 joinval2 18144 meetval2 18158 0idnsgd 18844 pmtrprfv 19106 pmtrprfv3 19107 symggen 19123 pmtr3ncomlem1 19126 psgnunilem1 19146 lspprcl 20285 lsptpcl 20286 lspprss 20299 lspprid1 20304 lsppratlem2 20455 lsppratlem3 20456 lsppratlem4 20457 drngnidl 20545 drnglpir 20569 mdetralt 21802 topgele 22124 pptbas 22203 isconn2 22610 xpsdsval 23579 itgioo 25025 wilthlem2 26263 perfectlem2 26423 upgrex 27507 upgr1e 27528 uspgr1e 27656 eupth2lems 28647 s2f1 31264 pmtrcnel 31403 pmtrcnel2 31404 pmtridf1o 31406 cycpm2tr 31431 cyc3co2 31452 cyc3evpm 31462 cyc3genpmlem 31463 cyc3conja 31469 linds2eq 31620 poimirlem9 35830 clsk1indlem4 41692 clsk1indlem1 41693 mnuprssd 41925 mnuprdlem4 41931 limsup10exlem 43362 meadjun 44050 line2 46156 line2y 46159 lubprlem 46314 joindm3 46321 meetdm3 46323 toplatjoin 46346 toplatmeet 46347 |
Copyright terms: Public domain | W3C validator |