![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version |
Description: Deduction version of prssi 4826: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 4826 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 |
This theorem is referenced by: fpr2g 7231 f1prex 7304 fveqf1o 7322 fr3nr 7791 en2eqpr 10045 en2eleq 10046 r0weon 10050 wuncval2 10785 nehash2 14510 1idssfct 16714 basprssdmsets 17258 mrcun 17667 joinval2 18439 meetval2 18453 0idnsgd 19202 pmtrprfv 19486 pmtrprfv3 19487 symggen 19503 pmtr3ncomlem1 19506 psgnunilem1 19526 lspprcl 20994 lsptpcl 20995 lspprss 21008 lspprid1 21013 lsppratlem2 21168 lsppratlem3 21169 lsppratlem4 21170 drngnidl 21271 drnglpir 21360 mdetralt 22630 topgele 22952 pptbas 23031 isconn2 23438 xpsdsval 24407 itgioo 25866 wilthlem2 27127 perfectlem2 27289 upgrex 29124 upgr1e 29145 uspgr1e 29276 eupth2lems 30267 s2f1 32914 pmtrcnel 33092 pmtrcnel2 33093 fzo0pmtrlast 33095 pmtridf1o 33097 cycpm2tr 33122 cyc3co2 33143 cyc3evpm 33153 cyc3genpmlem 33154 cyc3conja 33160 linds2eq 33389 drngmxidlr 33486 poimirlem9 37616 clsk1indlem4 44034 clsk1indlem1 44035 mnuprssd 44265 mnuprdlem4 44271 limsup10exlem 45728 meadjun 46418 clnbgrgrimlem 47839 stgredgiun 47861 stgrnbgr0 47867 grlimgrtrilem1 47897 gpgedgel 47943 line2 48602 line2y 48605 lubprlem 48759 joindm3 48766 meetdm3 48768 toplatjoin 48791 toplatmeet 48792 |
Copyright terms: Public domain | W3C validator |