| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4770: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4770 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: fpr2g 7145 f1prex 7218 fveqf1o 7236 fr3nr 7705 en2eqpr 9898 en2eleq 9899 r0weon 9903 wuncval2 10638 nehash2 14381 1idssfct 16591 basprssdmsets 17132 mrcun 17528 joinval2 18285 meetval2 18299 0idnsgd 19083 pmtrprfv 19365 pmtrprfv3 19366 symggen 19382 pmtr3ncomlem1 19385 psgnunilem1 19405 lspprcl 20911 lsptpcl 20912 lspprss 20925 lspprid1 20930 lsppratlem2 21085 lsppratlem3 21086 lsppratlem4 21087 drngnidl 21180 drnglpir 21269 mdetralt 22523 topgele 22845 pptbas 22923 isconn2 23329 xpsdsval 24296 itgioo 25744 wilthlem2 27006 perfectlem2 27168 upgrex 29070 upgr1e 29091 uspgr1e 29222 eupth2lems 30218 s2f1 32926 pmtrcnel 33058 pmtrcnel2 33059 fzo0pmtrlast 33061 pmtridf1o 33063 cycpm2tr 33088 cyc3co2 33109 cyc3evpm 33119 cyc3genpmlem 33120 cyc3conja 33126 elrgspnsubrunlem1 33214 gsumind 33310 linds2eq 33346 drngmxidlr 33443 esplylem 33587 esplympl 33588 esplyfv1 33590 constrllcllem 33765 constrlccllem 33766 poimirlem9 37679 clsk1indlem4 44147 clsk1indlem1 44148 mnuprssd 44372 mnuprdlem4 44378 limsup10exlem 45880 meadjun 46570 clnbgrgrimlem 48043 stgredgiun 48068 stgrnbgr0 48074 grlimprclnbgrvtx 48109 grlimgrtrilem1 48111 gpgiedgdmellem 48156 gpgprismgriedgdmss 48162 line2 48863 line2y 48866 lubprlem 49072 joindm3 49079 meetdm3 49081 toplatjoin 49112 toplatmeet 49113 |
| Copyright terms: Public domain | W3C validator |