| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4802: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4802 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: fpr2g 7208 f1prex 7282 fveqf1o 7300 fr3nr 7771 en2eqpr 10026 en2eleq 10027 r0weon 10031 wuncval2 10766 nehash2 14497 1idssfct 16704 basprssdmsets 17245 mrcun 17639 joinval2 18396 meetval2 18410 0idnsgd 19159 pmtrprfv 19439 pmtrprfv3 19440 symggen 19456 pmtr3ncomlem1 19459 psgnunilem1 19479 lspprcl 20940 lsptpcl 20941 lspprss 20954 lspprid1 20959 lsppratlem2 21114 lsppratlem3 21115 lsppratlem4 21116 drngnidl 21209 drnglpir 21298 mdetralt 22551 topgele 22873 pptbas 22951 isconn2 23357 xpsdsval 24325 itgioo 25774 wilthlem2 27036 perfectlem2 27198 upgrex 29076 upgr1e 29097 uspgr1e 29228 eupth2lems 30224 s2f1 32925 pmtrcnel 33105 pmtrcnel2 33106 fzo0pmtrlast 33108 pmtridf1o 33110 cycpm2tr 33135 cyc3co2 33156 cyc3evpm 33166 cyc3genpmlem 33167 cyc3conja 33173 elrgspnsubrunlem1 33247 linds2eq 33401 drngmxidlr 33498 constrllcllem 33791 constrlccllem 33792 poimirlem9 37658 clsk1indlem4 44035 clsk1indlem1 44036 mnuprssd 44260 mnuprdlem4 44266 limsup10exlem 45768 meadjun 46458 clnbgrgrimlem 47913 stgredgiun 47937 stgrnbgr0 47943 grlimgrtrilem1 47973 gpgiedgdmellem 48017 gpgprismgriedgdmss 48023 line2 48699 line2y 48702 lubprlem 48903 joindm3 48910 meetdm3 48912 toplatjoin 48943 toplatmeet 48944 |
| Copyright terms: Public domain | W3C validator |