| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4781: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4781 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: fpr2g 7167 f1prex 7241 fveqf1o 7259 fr3nr 7728 en2eqpr 9936 en2eleq 9937 r0weon 9941 wuncval2 10676 nehash2 14415 1idssfct 16626 basprssdmsets 17167 mrcun 17563 joinval2 18320 meetval2 18334 0idnsgd 19085 pmtrprfv 19367 pmtrprfv3 19368 symggen 19384 pmtr3ncomlem1 19387 psgnunilem1 19407 lspprcl 20916 lsptpcl 20917 lspprss 20930 lspprid1 20935 lsppratlem2 21090 lsppratlem3 21091 lsppratlem4 21092 drngnidl 21185 drnglpir 21274 mdetralt 22528 topgele 22850 pptbas 22928 isconn2 23334 xpsdsval 24302 itgioo 25750 wilthlem2 27012 perfectlem2 27174 upgrex 29072 upgr1e 29093 uspgr1e 29224 eupth2lems 30217 s2f1 32916 pmtrcnel 33061 pmtrcnel2 33062 fzo0pmtrlast 33064 pmtridf1o 33066 cycpm2tr 33091 cyc3co2 33112 cyc3evpm 33122 cyc3genpmlem 33123 cyc3conja 33129 elrgspnsubrunlem1 33214 linds2eq 33345 drngmxidlr 33442 constrllcllem 33735 constrlccllem 33736 poimirlem9 37616 clsk1indlem4 44026 clsk1indlem1 44027 mnuprssd 44251 mnuprdlem4 44257 limsup10exlem 45763 meadjun 46453 clnbgrgrimlem 47926 stgredgiun 47950 stgrnbgr0 47956 grlimgrtrilem1 47986 gpgiedgdmellem 48030 gpgprismgriedgdmss 48036 line2 48734 line2y 48737 lubprlem 48943 joindm3 48950 meetdm3 48952 toplatjoin 48983 toplatmeet 48984 |
| Copyright terms: Public domain | W3C validator |