Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version |
Description: Deduction version of prssi 4766: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 4766 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3897 {cpr 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 df-in 3904 df-ss 3914 df-sn 4572 df-pr 4574 |
This theorem is referenced by: fpr2g 7127 f1prex 7196 fveqf1o 7215 fr3nr 7664 en2eqpr 9843 en2eleq 9844 r0weon 9848 wuncval2 10583 nehash2 14267 1idssfct 16462 basprssdmsets 17002 mrcun 17408 joinval2 18176 meetval2 18190 0idnsgd 18875 pmtrprfv 19137 pmtrprfv3 19138 symggen 19154 pmtr3ncomlem1 19157 psgnunilem1 19177 lspprcl 20323 lsptpcl 20324 lspprss 20337 lspprid1 20342 lsppratlem2 20493 lsppratlem3 20494 lsppratlem4 20495 drngnidl 20583 drnglpir 20607 mdetralt 21840 topgele 22162 pptbas 22241 isconn2 22648 xpsdsval 23617 itgioo 25063 wilthlem2 26301 perfectlem2 26461 upgrex 27598 upgr1e 27619 uspgr1e 27747 eupth2lems 28738 s2f1 31354 pmtrcnel 31493 pmtrcnel2 31494 pmtridf1o 31496 cycpm2tr 31521 cyc3co2 31542 cyc3evpm 31552 cyc3genpmlem 31553 cyc3conja 31559 linds2eq 31714 poimirlem9 35858 clsk1indlem4 41888 clsk1indlem1 41889 mnuprssd 42121 mnuprdlem4 42127 limsup10exlem 43563 meadjun 44251 line2 46363 line2y 46366 lubprlem 46521 joindm3 46528 meetdm3 46530 toplatjoin 46553 toplatmeet 46554 |
Copyright terms: Public domain | W3C validator |