![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version |
Description: Deduction version of prssi 4846: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 4846 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: fpr2g 7248 f1prex 7320 fveqf1o 7338 fr3nr 7807 en2eqpr 10076 en2eleq 10077 r0weon 10081 wuncval2 10816 nehash2 14523 1idssfct 16727 basprssdmsets 17271 mrcun 17680 joinval2 18451 meetval2 18465 0idnsgd 19211 pmtrprfv 19495 pmtrprfv3 19496 symggen 19512 pmtr3ncomlem1 19515 psgnunilem1 19535 lspprcl 20999 lsptpcl 21000 lspprss 21013 lspprid1 21018 lsppratlem2 21173 lsppratlem3 21174 lsppratlem4 21175 drngnidl 21276 drnglpir 21365 mdetralt 22635 topgele 22957 pptbas 23036 isconn2 23443 xpsdsval 24412 itgioo 25871 wilthlem2 27130 perfectlem2 27292 upgrex 29127 upgr1e 29148 uspgr1e 29279 eupth2lems 30270 s2f1 32911 pmtrcnel 33082 pmtrcnel2 33083 fzo0pmtrlast 33085 pmtridf1o 33087 cycpm2tr 33112 cyc3co2 33133 cyc3evpm 33143 cyc3genpmlem 33144 cyc3conja 33150 linds2eq 33374 drngmxidlr 33471 poimirlem9 37589 clsk1indlem4 44006 clsk1indlem1 44007 mnuprssd 44238 mnuprdlem4 44244 limsup10exlem 45693 meadjun 46383 clnbgrgrimlem 47785 grlimgrtrilem1 47818 line2 48486 line2y 48489 lubprlem 48642 joindm3 48649 meetdm3 48651 toplatjoin 48674 toplatmeet 48675 |
Copyright terms: Public domain | W3C validator |