Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version |
Description: Deduction version of prssi 4759: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | prssi 4759 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3891 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-in 3898 df-ss 3908 df-sn 4567 df-pr 4569 |
This theorem is referenced by: fpr2g 7081 f1prex 7149 fveqf1o 7168 fr3nr 7613 en2eqpr 9747 en2eleq 9748 r0weon 9752 wuncval2 10487 nehash2 14169 1idssfct 16366 basprssdmsets 16906 mrcun 17312 joinval2 18080 meetval2 18094 0idnsgd 18780 pmtrprfv 19042 pmtrprfv3 19043 symggen 19059 pmtr3ncomlem1 19062 psgnunilem1 19082 lspprcl 20221 lsptpcl 20222 lspprss 20235 lspprid1 20240 lsppratlem2 20391 lsppratlem3 20392 lsppratlem4 20393 drngnidl 20481 drnglpir 20505 mdetralt 21738 topgele 22060 pptbas 22139 isconn2 22546 xpsdsval 23515 itgioo 24961 wilthlem2 26199 perfectlem2 26359 upgrex 27443 upgr1e 27464 uspgr1e 27592 eupth2lems 28581 s2f1 31198 pmtrcnel 31337 pmtrcnel2 31338 pmtridf1o 31340 cycpm2tr 31365 cyc3co2 31386 cyc3evpm 31396 cyc3genpmlem 31397 cyc3conja 31403 linds2eq 31554 poimirlem9 35765 clsk1indlem4 41607 clsk1indlem1 41608 mnuprssd 41840 mnuprdlem4 41846 limsup10exlem 43267 meadjun 43954 line2 46050 line2y 46053 lubprlem 46208 joindm3 46215 meetdm3 46217 toplatjoin 46240 toplatmeet 46241 |
Copyright terms: Public domain | W3C validator |