| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4785: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4785 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: fpr2g 7185 f1prex 7259 fveqf1o 7277 fr3nr 7748 en2eqpr 9960 en2eleq 9961 r0weon 9965 wuncval2 10700 nehash2 14439 1idssfct 16650 basprssdmsets 17191 mrcun 17583 joinval2 18340 meetval2 18354 0idnsgd 19103 pmtrprfv 19383 pmtrprfv3 19384 symggen 19400 pmtr3ncomlem1 19403 psgnunilem1 19423 lspprcl 20884 lsptpcl 20885 lspprss 20898 lspprid1 20903 lsppratlem2 21058 lsppratlem3 21059 lsppratlem4 21060 drngnidl 21153 drnglpir 21242 mdetralt 22495 topgele 22817 pptbas 22895 isconn2 23301 xpsdsval 24269 itgioo 25717 wilthlem2 26979 perfectlem2 27141 upgrex 29019 upgr1e 29040 uspgr1e 29171 eupth2lems 30167 s2f1 32866 pmtrcnel 33046 pmtrcnel2 33047 fzo0pmtrlast 33049 pmtridf1o 33051 cycpm2tr 33076 cyc3co2 33097 cyc3evpm 33107 cyc3genpmlem 33108 cyc3conja 33114 elrgspnsubrunlem1 33198 linds2eq 33352 drngmxidlr 33449 constrllcllem 33742 constrlccllem 33743 poimirlem9 37623 clsk1indlem4 44033 clsk1indlem1 44034 mnuprssd 44258 mnuprdlem4 44264 limsup10exlem 45770 meadjun 46460 clnbgrgrimlem 47933 stgredgiun 47957 stgrnbgr0 47963 grlimgrtrilem1 47993 gpgiedgdmellem 48037 gpgprismgriedgdmss 48043 line2 48741 line2y 48744 lubprlem 48950 joindm3 48957 meetdm3 48959 toplatjoin 48990 toplatmeet 48991 |
| Copyright terms: Public domain | W3C validator |