| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4772: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4772 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: fpr2g 7147 f1prex 7221 fveqf1o 7239 fr3nr 7708 en2eqpr 9901 en2eleq 9902 r0weon 9906 wuncval2 10641 nehash2 14381 1idssfct 16591 basprssdmsets 17132 mrcun 17528 joinval2 18285 meetval2 18299 0idnsgd 19050 pmtrprfv 19332 pmtrprfv3 19333 symggen 19349 pmtr3ncomlem1 19352 psgnunilem1 19372 lspprcl 20881 lsptpcl 20882 lspprss 20895 lspprid1 20900 lsppratlem2 21055 lsppratlem3 21056 lsppratlem4 21057 drngnidl 21150 drnglpir 21239 mdetralt 22493 topgele 22815 pptbas 22893 isconn2 23299 xpsdsval 24267 itgioo 25715 wilthlem2 26977 perfectlem2 27139 upgrex 29037 upgr1e 29058 uspgr1e 29189 eupth2lems 30182 s2f1 32886 pmtrcnel 33031 pmtrcnel2 33032 fzo0pmtrlast 33034 pmtridf1o 33036 cycpm2tr 33061 cyc3co2 33082 cyc3evpm 33092 cyc3genpmlem 33093 cyc3conja 33099 elrgspnsubrunlem1 33187 linds2eq 33318 drngmxidlr 33415 constrllcllem 33719 constrlccllem 33720 poimirlem9 37613 clsk1indlem4 44021 clsk1indlem1 44022 mnuprssd 44246 mnuprdlem4 44252 limsup10exlem 45757 meadjun 46447 clnbgrgrimlem 47921 stgredgiun 47946 stgrnbgr0 47952 grlimprclnbgrvtx 47987 grlimgrtrilem1 47989 gpgiedgdmellem 48034 gpgprismgriedgdmss 48040 line2 48741 line2y 48744 lubprlem 48950 joindm3 48957 meetdm3 48959 toplatjoin 48990 toplatmeet 48991 |
| Copyright terms: Public domain | W3C validator |