| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of prssi 4788: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| prssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| prssd | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | prssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | prssi 4788 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: fpr2g 7188 f1prex 7262 fveqf1o 7280 fr3nr 7751 en2eqpr 9967 en2eleq 9968 r0weon 9972 wuncval2 10707 nehash2 14446 1idssfct 16657 basprssdmsets 17198 mrcun 17590 joinval2 18347 meetval2 18361 0idnsgd 19110 pmtrprfv 19390 pmtrprfv3 19391 symggen 19407 pmtr3ncomlem1 19410 psgnunilem1 19430 lspprcl 20891 lsptpcl 20892 lspprss 20905 lspprid1 20910 lsppratlem2 21065 lsppratlem3 21066 lsppratlem4 21067 drngnidl 21160 drnglpir 21249 mdetralt 22502 topgele 22824 pptbas 22902 isconn2 23308 xpsdsval 24276 itgioo 25724 wilthlem2 26986 perfectlem2 27148 upgrex 29026 upgr1e 29047 uspgr1e 29178 eupth2lems 30174 s2f1 32873 pmtrcnel 33053 pmtrcnel2 33054 fzo0pmtrlast 33056 pmtridf1o 33058 cycpm2tr 33083 cyc3co2 33104 cyc3evpm 33114 cyc3genpmlem 33115 cyc3conja 33121 elrgspnsubrunlem1 33205 linds2eq 33359 drngmxidlr 33456 constrllcllem 33749 constrlccllem 33750 poimirlem9 37630 clsk1indlem4 44040 clsk1indlem1 44041 mnuprssd 44265 mnuprdlem4 44271 limsup10exlem 45777 meadjun 46467 clnbgrgrimlem 47937 stgredgiun 47961 stgrnbgr0 47967 grlimgrtrilem1 47997 gpgiedgdmellem 48041 gpgprismgriedgdmss 48047 line2 48745 line2y 48748 lubprlem 48954 joindm3 48961 meetdm3 48963 toplatjoin 48994 toplatmeet 48995 |
| Copyright terms: Public domain | W3C validator |