| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssdifcom1 | Structured version Visualization version GIF version | ||
| Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| Ref | Expression |
|---|---|
| pssdifcom1 | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difcom 4469 | . . . 4 ⊢ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴)) |
| 3 | ssconb 4122 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
| 5 | 4 | notbid 318 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (¬ 𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
| 6 | 2, 5 | anbi12d 632 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴)) ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵)))) |
| 7 | dfpss3 4069 | . 2 ⊢ ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | |
| 8 | dfpss3 4069 | . 2 ⊢ ((𝐶 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∖ cdif 3928 ⊆ wss 3931 ⊊ wpss 3932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-pss 3951 |
| This theorem is referenced by: isfin2-2 10340 compssiso 10395 |
| Copyright terms: Public domain | W3C validator |