MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom1 Structured version   Visualization version   GIF version

Theorem pssdifcom1 4420
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom1 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊊ 𝐵 ↔ (𝐶𝐵) ⊊ 𝐴))

Proof of Theorem pssdifcom1
StepHypRef Expression
1 difcom 4419 . . . 4 ((𝐶𝐴) ⊆ 𝐵 ↔ (𝐶𝐵) ⊆ 𝐴)
21a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊆ 𝐵 ↔ (𝐶𝐵) ⊆ 𝐴))
3 ssconb 4072 . . . . 5 ((𝐵𝐶𝐴𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
43ancoms 459 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
54notbid 318 . . 3 ((𝐴𝐶𝐵𝐶) → (¬ 𝐵 ⊆ (𝐶𝐴) ↔ ¬ 𝐴 ⊆ (𝐶𝐵)))
62, 5anbi12d 631 . 2 ((𝐴𝐶𝐵𝐶) → (((𝐶𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶𝐴)) ↔ ((𝐶𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶𝐵))))
7 dfpss3 4021 . 2 ((𝐶𝐴) ⊊ 𝐵 ↔ ((𝐶𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶𝐴)))
8 dfpss3 4021 . 2 ((𝐶𝐵) ⊊ 𝐴 ↔ ((𝐶𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶𝐵)))
96, 7, 83bitr4g 314 1 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊊ 𝐵 ↔ (𝐶𝐵) ⊊ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  cdif 3884  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906
This theorem is referenced by:  isfin2-2  10075  compssiso  10130
  Copyright terms: Public domain W3C validator