MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom1 Structured version   Visualization version   GIF version

Theorem pssdifcom1 4246
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom1 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊊ 𝐵 ↔ (𝐶𝐵) ⊊ 𝐴))

Proof of Theorem pssdifcom1
StepHypRef Expression
1 difcom 4245 . . . 4 ((𝐶𝐴) ⊆ 𝐵 ↔ (𝐶𝐵) ⊆ 𝐴)
21a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊆ 𝐵 ↔ (𝐶𝐵) ⊆ 𝐴))
3 ssconb 3939 . . . . 5 ((𝐵𝐶𝐴𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
43ancoms 451 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
54notbid 310 . . 3 ((𝐴𝐶𝐵𝐶) → (¬ 𝐵 ⊆ (𝐶𝐴) ↔ ¬ 𝐴 ⊆ (𝐶𝐵)))
62, 5anbi12d 625 . 2 ((𝐴𝐶𝐵𝐶) → (((𝐶𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶𝐴)) ↔ ((𝐶𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶𝐵))))
7 dfpss3 3888 . 2 ((𝐶𝐴) ⊊ 𝐵 ↔ ((𝐶𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶𝐴)))
8 dfpss3 3888 . 2 ((𝐶𝐵) ⊊ 𝐴 ↔ ((𝐶𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶𝐵)))
96, 7, 83bitr4g 306 1 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐴) ⊊ 𝐵 ↔ (𝐶𝐵) ⊊ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  cdif 3764  wss 3767  wpss 3768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2775
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783
This theorem is referenced by:  isfin2-2  9427  compssiso  9482
  Copyright terms: Public domain W3C validator