Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssdifcom1 | Structured version Visualization version GIF version |
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
Ref | Expression |
---|---|
pssdifcom1 | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difcom 4416 | . . . 4 ⊢ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴)) |
3 | ssconb 4068 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
5 | 4 | notbid 317 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (¬ 𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
6 | 2, 5 | anbi12d 630 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴)) ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵)))) |
7 | dfpss3 4017 | . 2 ⊢ ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | |
8 | dfpss3 4017 | . 2 ⊢ ((𝐶 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
9 | 6, 7, 8 | 3bitr4g 313 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∖ cdif 3880 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: isfin2-2 10006 compssiso 10061 |
Copyright terms: Public domain | W3C validator |