MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2-2 Structured version   Visualization version   GIF version

Theorem isfin2-2 10255
Description: FinII expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
isfin2-2 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin2-2
Dummy variables 𝑏 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4567 . . . 4 (𝑦 ∈ 𝒫 𝒫 𝐴𝑦 ⊆ 𝒫 𝐴)
2 fin2i2 10254 . . . . 5 (((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) ∧ (𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑦)
32ex 413 . . . 4 ((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
41, 3sylan2 593 . . 3 ((𝐴 ∈ FinII𝑦 ∈ 𝒫 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
54ralrimiva 3143 . 2 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
6 elpwi 4567 . . . . 5 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
7 simp1r 1198 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simp1l 1197 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝐴𝑉)
9 simp3l 1201 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
10 fin23lem7 10252 . . . . . . . . . . 11 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
118, 7, 9, 10syl3anc 1371 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
12 sorpsscmpl 7671 . . . . . . . . . . . 12 ( [] Or 𝑏 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
1312adantl 482 . . . . . . . . . . 11 ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
14133ad2ant3 1135 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
15 neeq1 3006 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (𝑦 ≠ ∅ ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅))
16 soeq2 5567 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( [] Or 𝑦 ↔ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
1715, 16anbi12d 631 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
18 inteq 4910 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
19 id 22 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
2018, 19eleq12d 2832 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( 𝑦𝑦 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2117, 20imbi12d 344 . . . . . . . . . . 11 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
22 simp2 1137 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
23 ssrab2 4037 . . . . . . . . . . . 12 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴
24 pwexg 5333 . . . . . . . . . . . . 13 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
25 elpw2g 5301 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
268, 24, 253syl 18 . . . . . . . . . . . 12 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
2723, 26mpbiri 257 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴)
2821, 22, 27rspcdva 3582 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2911, 14, 28mp2and 697 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
30 sorpssint 7670 . . . . . . . . . 10 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3114, 30syl 17 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3229, 31mpbird 256 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧)
33 psseq1 4047 . . . . . . . . 9 (𝑚 = (𝐴𝑧) → (𝑚𝑛 ↔ (𝐴𝑧) ⊊ 𝑛))
34 psseq1 4047 . . . . . . . . 9 (𝑤 = (𝐴𝑛) → (𝑤𝑧 ↔ (𝐴𝑛) ⊊ 𝑧))
35 pssdifcom1 4447 . . . . . . . . 9 ((𝑧𝐴𝑛𝐴) → ((𝐴𝑧) ⊊ 𝑛 ↔ (𝐴𝑛) ⊊ 𝑧))
3633, 34, 35fin23lem11 10253 . . . . . . . 8 (𝑏 ⊆ 𝒫 𝐴 → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛))
377, 32, 36sylc 65 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛)
38 simp3r 1202 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or 𝑏)
39 sorpssuni 7669 . . . . . . . 8 ( [] Or 𝑏 → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4038, 39syl 17 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4137, 40mpbid 231 . . . . . 6 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
42413exp 1119 . . . . 5 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
436, 42sylan2 593 . . . 4 ((𝐴𝑉𝑏 ∈ 𝒫 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4443ralrimdva 3151 . . 3 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
45 isfin2 10230 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4644, 45sylibrd 258 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → 𝐴 ∈ FinII))
475, 46impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  wpss 3911  c0 4282  𝒫 cpw 4560   cuni 4865   cint 4907   Or wor 5544   [] crpss 7659  FinIIcfin2 10215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-rpss 7660  df-fin2 10222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator