MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2-2 Structured version   Visualization version   GIF version

Theorem isfin2-2 10388
Description: FinII expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
isfin2-2 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin2-2
Dummy variables 𝑏 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4629 . . . 4 (𝑦 ∈ 𝒫 𝒫 𝐴𝑦 ⊆ 𝒫 𝐴)
2 fin2i2 10387 . . . . 5 (((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) ∧ (𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑦)
32ex 412 . . . 4 ((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
41, 3sylan2 592 . . 3 ((𝐴 ∈ FinII𝑦 ∈ 𝒫 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
54ralrimiva 3152 . 2 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
6 elpwi 4629 . . . . 5 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
7 simp1r 1198 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simp1l 1197 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝐴𝑉)
9 simp3l 1201 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
10 fin23lem7 10385 . . . . . . . . . . 11 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
118, 7, 9, 10syl3anc 1371 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
12 sorpsscmpl 7769 . . . . . . . . . . . 12 ( [] Or 𝑏 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
1312adantl 481 . . . . . . . . . . 11 ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
14133ad2ant3 1135 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
15 neeq1 3009 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (𝑦 ≠ ∅ ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅))
16 soeq2 5630 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( [] Or 𝑦 ↔ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
1715, 16anbi12d 631 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
18 inteq 4973 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
19 id 22 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
2018, 19eleq12d 2838 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( 𝑦𝑦 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2117, 20imbi12d 344 . . . . . . . . . . 11 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
22 simp2 1137 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
23 ssrab2 4103 . . . . . . . . . . . 12 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴
24 pwexg 5396 . . . . . . . . . . . . 13 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
25 elpw2g 5351 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
268, 24, 253syl 18 . . . . . . . . . . . 12 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
2723, 26mpbiri 258 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴)
2821, 22, 27rspcdva 3636 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2911, 14, 28mp2and 698 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
30 sorpssint 7768 . . . . . . . . . 10 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3114, 30syl 17 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3229, 31mpbird 257 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧)
33 psseq1 4113 . . . . . . . . 9 (𝑚 = (𝐴𝑧) → (𝑚𝑛 ↔ (𝐴𝑧) ⊊ 𝑛))
34 psseq1 4113 . . . . . . . . 9 (𝑤 = (𝐴𝑛) → (𝑤𝑧 ↔ (𝐴𝑛) ⊊ 𝑧))
35 pssdifcom1 4513 . . . . . . . . 9 ((𝑧𝐴𝑛𝐴) → ((𝐴𝑧) ⊊ 𝑛 ↔ (𝐴𝑛) ⊊ 𝑧))
3633, 34, 35fin23lem11 10386 . . . . . . . 8 (𝑏 ⊆ 𝒫 𝐴 → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛))
377, 32, 36sylc 65 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛)
38 simp3r 1202 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or 𝑏)
39 sorpssuni 7767 . . . . . . . 8 ( [] Or 𝑏 → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4038, 39syl 17 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4137, 40mpbid 232 . . . . . 6 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
42413exp 1119 . . . . 5 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
436, 42sylan2 592 . . . 4 ((𝐴𝑉𝑏 ∈ 𝒫 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4443ralrimdva 3160 . . 3 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
45 isfin2 10363 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4644, 45sylibrd 259 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → 𝐴 ∈ FinII))
475, 46impbid2 226 1 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  wpss 3977  c0 4352  𝒫 cpw 4622   cuni 4931   cint 4970   Or wor 5606   [] crpss 7757  FinIIcfin2 10348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-rpss 7758  df-fin2 10355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator