MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2-2 Structured version   Visualization version   GIF version

Theorem isfin2-2 9743
Description: FinII expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
isfin2-2 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin2-2
Dummy variables 𝑏 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4550 . . . 4 (𝑦 ∈ 𝒫 𝒫 𝐴𝑦 ⊆ 𝒫 𝐴)
2 fin2i2 9742 . . . . 5 (((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) ∧ (𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑦)
32ex 415 . . . 4 ((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
41, 3sylan2 594 . . 3 ((𝐴 ∈ FinII𝑦 ∈ 𝒫 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
54ralrimiva 3184 . 2 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
6 elpwi 4550 . . . . 5 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
7 simp1r 1194 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simp1l 1193 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝐴𝑉)
9 simp3l 1197 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
10 fin23lem7 9740 . . . . . . . . . . 11 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
118, 7, 9, 10syl3anc 1367 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
12 sorpsscmpl 7462 . . . . . . . . . . . 12 ( [] Or 𝑏 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
1312adantl 484 . . . . . . . . . . 11 ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
14133ad2ant3 1131 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
15 neeq1 3080 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (𝑦 ≠ ∅ ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅))
16 soeq2 5497 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( [] Or 𝑦 ↔ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
1715, 16anbi12d 632 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
18 inteq 4881 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
19 id 22 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
2018, 19eleq12d 2909 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( 𝑦𝑦 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2117, 20imbi12d 347 . . . . . . . . . . 11 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
22 simp2 1133 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
23 ssrab2 4058 . . . . . . . . . . . 12 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴
24 pwexg 5281 . . . . . . . . . . . . 13 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
25 elpw2g 5249 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
268, 24, 253syl 18 . . . . . . . . . . . 12 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
2723, 26mpbiri 260 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴)
2821, 22, 27rspcdva 3627 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2911, 14, 28mp2and 697 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
30 sorpssint 7461 . . . . . . . . . 10 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3114, 30syl 17 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3229, 31mpbird 259 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧)
33 psseq1 4066 . . . . . . . . 9 (𝑚 = (𝐴𝑧) → (𝑚𝑛 ↔ (𝐴𝑧) ⊊ 𝑛))
34 psseq1 4066 . . . . . . . . 9 (𝑤 = (𝐴𝑛) → (𝑤𝑧 ↔ (𝐴𝑛) ⊊ 𝑧))
35 pssdifcom1 4437 . . . . . . . . 9 ((𝑧𝐴𝑛𝐴) → ((𝐴𝑧) ⊊ 𝑛 ↔ (𝐴𝑛) ⊊ 𝑧))
3633, 34, 35fin23lem11 9741 . . . . . . . 8 (𝑏 ⊆ 𝒫 𝐴 → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛))
377, 32, 36sylc 65 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛)
38 simp3r 1198 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or 𝑏)
39 sorpssuni 7460 . . . . . . . 8 ( [] Or 𝑏 → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4038, 39syl 17 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4137, 40mpbid 234 . . . . . 6 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
42413exp 1115 . . . . 5 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
436, 42sylan2 594 . . . 4 ((𝐴𝑉𝑏 ∈ 𝒫 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4443ralrimdva 3191 . . 3 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
45 isfin2 9718 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4644, 45sylibrd 261 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → 𝐴 ∈ FinII))
475, 46impbid2 228 1 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  wss 3938  wpss 3939  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878   Or wor 5475   [] crpss 7450  FinIIcfin2 9703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-rpss 7451  df-fin2 9710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator