| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssdifcom2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| Ref | Expression |
|---|---|
| pssdifcom2 | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssconb 4117 | . . . 4 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
| 3 | difcom 4464 | . . . . 5 ⊢ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴) | |
| 4 | 3 | notbii 320 | . . . 4 ⊢ (¬ (𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴) |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (¬ (𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴)) |
| 6 | 2, 5 | anbi12d 632 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐵 ⊆ (𝐶 ∖ 𝐴) ∧ ¬ (𝐶 ∖ 𝐴) ⊆ 𝐵) ↔ (𝐴 ⊆ (𝐶 ∖ 𝐵) ∧ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴))) |
| 7 | dfpss3 4064 | . 2 ⊢ (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ (𝐵 ⊆ (𝐶 ∖ 𝐴) ∧ ¬ (𝐶 ∖ 𝐴) ⊆ 𝐵)) | |
| 8 | dfpss3 4064 | . 2 ⊢ (𝐴 ⊊ (𝐶 ∖ 𝐵) ↔ (𝐴 ⊆ (𝐶 ∖ 𝐵) ∧ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∖ cdif 3923 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-pss 3946 |
| This theorem is referenced by: fin2i2 10332 |
| Copyright terms: Public domain | W3C validator |