MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom2 Structured version   Visualization version   GIF version

Theorem pssdifcom2 4418
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom2 ((𝐴𝐶𝐵𝐶) → (𝐵 ⊊ (𝐶𝐴) ↔ 𝐴 ⊊ (𝐶𝐵)))

Proof of Theorem pssdifcom2
StepHypRef Expression
1 ssconb 4068 . . . 4 ((𝐵𝐶𝐴𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
21ancoms 458 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐵 ⊆ (𝐶𝐴) ↔ 𝐴 ⊆ (𝐶𝐵)))
3 difcom 4416 . . . . 5 ((𝐶𝐴) ⊆ 𝐵 ↔ (𝐶𝐵) ⊆ 𝐴)
43notbii 319 . . . 4 (¬ (𝐶𝐴) ⊆ 𝐵 ↔ ¬ (𝐶𝐵) ⊆ 𝐴)
54a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → (¬ (𝐶𝐴) ⊆ 𝐵 ↔ ¬ (𝐶𝐵) ⊆ 𝐴))
62, 5anbi12d 630 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐵 ⊆ (𝐶𝐴) ∧ ¬ (𝐶𝐴) ⊆ 𝐵) ↔ (𝐴 ⊆ (𝐶𝐵) ∧ ¬ (𝐶𝐵) ⊆ 𝐴)))
7 dfpss3 4017 . 2 (𝐵 ⊊ (𝐶𝐴) ↔ (𝐵 ⊆ (𝐶𝐴) ∧ ¬ (𝐶𝐴) ⊆ 𝐵))
8 dfpss3 4017 . 2 (𝐴 ⊊ (𝐶𝐵) ↔ (𝐴 ⊆ (𝐶𝐵) ∧ ¬ (𝐶𝐵) ⊆ 𝐴))
96, 7, 83bitr4g 313 1 ((𝐴𝐶𝐵𝐶) → (𝐵 ⊊ (𝐶𝐴) ↔ 𝐴 ⊊ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  cdif 3880  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902
This theorem is referenced by:  fin2i2  10005
  Copyright terms: Public domain W3C validator