![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdifcom2 | Structured version Visualization version GIF version |
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
Ref | Expression |
---|---|
pssdifcom2 | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssconb 4138 | . . . 4 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
2 | 1 | ancoms 460 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
3 | difcom 4489 | . . . . 5 ⊢ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴) | |
4 | 3 | notbii 320 | . . . 4 ⊢ (¬ (𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (¬ (𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴)) |
6 | 2, 5 | anbi12d 632 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐵 ⊆ (𝐶 ∖ 𝐴) ∧ ¬ (𝐶 ∖ 𝐴) ⊆ 𝐵) ↔ (𝐴 ⊆ (𝐶 ∖ 𝐵) ∧ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴))) |
7 | dfpss3 4087 | . 2 ⊢ (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ (𝐵 ⊆ (𝐶 ∖ 𝐴) ∧ ¬ (𝐶 ∖ 𝐴) ⊆ 𝐵)) | |
8 | dfpss3 4087 | . 2 ⊢ (𝐴 ⊊ (𝐶 ∖ 𝐵) ↔ (𝐴 ⊆ (𝐶 ∖ 𝐵) ∧ ¬ (𝐶 ∖ 𝐵) ⊆ 𝐴)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∖ cdif 3946 ⊆ wss 3949 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 |
This theorem is referenced by: fin2i2 10313 |
Copyright terms: Public domain | W3C validator |