Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvatlem Structured version   Visualization version   GIF version

Theorem lsatcvatlem 37856
Description: Lemma for lsatcvat 37857. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
lsatcvat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lsatcvatlem (𝜑𝑈𝐴)

Proof of Theorem lsatcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lsatcvat.o . . 3 0 = (0g𝑊)
3 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
5 lveclmod 20704 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . 3 (𝜑𝑊 ∈ LMod)
7 lsatcvat.u . . 3 (𝜑𝑈𝑆)
8 lsatcvat.n . . 3 (𝜑𝑈 ≠ { 0 })
91, 2, 3, 6, 7, 8lssatomic 37818 . 2 (𝜑 → ∃𝑥𝐴 𝑥𝑈)
10 eqid 2733 . . . . 5 ( ⋖L𝑊) = ( ⋖L𝑊)
1143ad2ant1 1134 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LVec)
1263ad2ant1 1134 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LMod)
13 simp2 1138 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝐴)
141, 3, 12, 13lsatlssel 37804 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑆)
15 lsatcvat.q . . . . . . . 8 (𝜑𝑄𝐴)
161, 3, 6, 15lsatlssel 37804 . . . . . . 7 (𝜑𝑄𝑆)
17163ad2ant1 1134 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝑆)
18 lsatcvat.p . . . . . . 7 = (LSSum‘𝑊)
191, 18lsmcl 20681 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑥𝑆) → (𝑄 𝑥) ∈ 𝑆)
2012, 17, 14, 19syl3anc 1372 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ 𝑆)
2173ad2ant1 1134 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝑆)
22 lsatcvat.m . . . . . . . . . 10 (𝜑 → ¬ 𝑄𝑈)
23223ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → ¬ 𝑄𝑈)
24 sseq1 4005 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (𝑥𝑈𝑄𝑈))
2524biimpcd 248 . . . . . . . . . . 11 (𝑥𝑈 → (𝑥 = 𝑄𝑄𝑈))
2625necon3bd 2955 . . . . . . . . . 10 (𝑥𝑈 → (¬ 𝑄𝑈𝑥𝑄))
27263ad2ant3 1136 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → (¬ 𝑄𝑈𝑥𝑄))
2823, 27mpd 15 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑄)
29153ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝐴)
302, 3, 11, 13, 29lsatnem0 37852 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄 ↔ (𝑥𝑄) = { 0 }))
3128, 30mpbid 231 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄) = { 0 })
321, 18, 2, 3, 10, 11, 14, 29lcvp 37847 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑥𝑄) = { 0 } ↔ 𝑥( ⋖L𝑊)(𝑥 𝑄)))
3331, 32mpbid 231 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑥 𝑄))
34 lmodabl 20506 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3512, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ Abel)
361lsssssubg 20556 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
3712, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑆 ⊆ (SubGrp‘𝑊))
3837, 14sseldd 3981 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ∈ (SubGrp‘𝑊))
3937, 17sseldd 3981 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ∈ (SubGrp‘𝑊))
4018lsmcom 19717 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑥 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → (𝑥 𝑄) = (𝑄 𝑥))
4135, 38, 39, 40syl3anc 1372 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥 𝑄) = (𝑄 𝑥))
4233, 41breqtrd 5172 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑄 𝑥))
43 simp3 1139 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑈)
44 lsatcvat.l . . . . . . 7 (𝜑𝑈 ⊊ (𝑄 𝑅))
45443ad2ant1 1134 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑅))
4618lsmub1 19517 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (SubGrp‘𝑊)) → 𝑄 ⊆ (𝑄 𝑥))
4739, 38, 46syl2anc 585 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ⊆ (𝑄 𝑥))
48 lsatcvat.r . . . . . . . . 9 (𝜑𝑅𝐴)
49483ad2ant1 1134 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝐴)
5044pssssd 4095 . . . . . . . . . 10 (𝜑𝑈 ⊆ (𝑄 𝑅))
51503ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊆ (𝑄 𝑅))
5243, 51sstrd 3990 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ⊆ (𝑄 𝑅))
5318, 3, 11, 13, 49, 29, 52, 28lsatexch1 37853 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ⊆ (𝑄 𝑥))
541, 3, 6, 48lsatlssel 37804 . . . . . . . . . 10 (𝜑𝑅𝑆)
55543ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝑆)
5637, 55sseldd 3981 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ∈ (SubGrp‘𝑊))
5737, 20sseldd 3981 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ (SubGrp‘𝑊))
5818lsmlub 19524 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑥) ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
5939, 56, 57, 58syl3anc 1372 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
6047, 53, 59mpbi2and 711 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑅) ⊆ (𝑄 𝑥))
6145, 60psssstrd 4107 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑥))
621, 10, 11, 14, 20, 21, 42, 43, 61lcvnbtwn3 37835 . . . 4 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 = 𝑥)
6362, 13eqeltrd 2834 . . 3 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝐴)
6463rexlimdv3a 3160 . 2 (𝜑 → (∃𝑥𝐴 𝑥𝑈𝑈𝐴))
659, 64mpd 15 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  cin 3945  wss 3946  wpss 3947  {csn 4626   class class class wbr 5146  cfv 6539  (class class class)co 7403  0gc0g 17380  SubGrpcsubg 18993  LSSumclsm 19494  Abelcabl 19641  LModclmod 20458  LSubSpclss 20529  LVecclvec 20700  LSAtomsclsa 37781  L clcv 37825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-0g 17382  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-submnd 18667  df-grp 18817  df-minusg 18818  df-sbg 18819  df-subg 18996  df-cntz 19174  df-oppg 19202  df-lsm 19496  df-cmn 19642  df-abl 19643  df-mgp 19979  df-ur 19996  df-ring 20048  df-oppr 20138  df-dvdsr 20159  df-unit 20160  df-invr 20190  df-drng 20305  df-lmod 20460  df-lss 20530  df-lsp 20570  df-lvec 20701  df-lsatoms 37783  df-lcv 37826
This theorem is referenced by:  lsatcvat  37857
  Copyright terms: Public domain W3C validator