Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvatlem Structured version   Visualization version   GIF version

Theorem lsatcvatlem 36990
Description: Lemma for lsatcvat 36991. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
lsatcvat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lsatcvatlem (𝜑𝑈𝐴)

Proof of Theorem lsatcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lsatcvat.o . . 3 0 = (0g𝑊)
3 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
5 lveclmod 20283 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . 3 (𝜑𝑊 ∈ LMod)
7 lsatcvat.u . . 3 (𝜑𝑈𝑆)
8 lsatcvat.n . . 3 (𝜑𝑈 ≠ { 0 })
91, 2, 3, 6, 7, 8lssatomic 36952 . 2 (𝜑 → ∃𝑥𝐴 𝑥𝑈)
10 eqid 2738 . . . . 5 ( ⋖L𝑊) = ( ⋖L𝑊)
1143ad2ant1 1131 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LVec)
1263ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LMod)
13 simp2 1135 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝐴)
141, 3, 12, 13lsatlssel 36938 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑆)
15 lsatcvat.q . . . . . . . 8 (𝜑𝑄𝐴)
161, 3, 6, 15lsatlssel 36938 . . . . . . 7 (𝜑𝑄𝑆)
17163ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝑆)
18 lsatcvat.p . . . . . . 7 = (LSSum‘𝑊)
191, 18lsmcl 20260 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑥𝑆) → (𝑄 𝑥) ∈ 𝑆)
2012, 17, 14, 19syl3anc 1369 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ 𝑆)
2173ad2ant1 1131 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝑆)
22 lsatcvat.m . . . . . . . . . 10 (𝜑 → ¬ 𝑄𝑈)
23223ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → ¬ 𝑄𝑈)
24 sseq1 3942 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (𝑥𝑈𝑄𝑈))
2524biimpcd 248 . . . . . . . . . . 11 (𝑥𝑈 → (𝑥 = 𝑄𝑄𝑈))
2625necon3bd 2956 . . . . . . . . . 10 (𝑥𝑈 → (¬ 𝑄𝑈𝑥𝑄))
27263ad2ant3 1133 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → (¬ 𝑄𝑈𝑥𝑄))
2823, 27mpd 15 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑄)
29153ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝐴)
302, 3, 11, 13, 29lsatnem0 36986 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄 ↔ (𝑥𝑄) = { 0 }))
3128, 30mpbid 231 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄) = { 0 })
321, 18, 2, 3, 10, 11, 14, 29lcvp 36981 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑥𝑄) = { 0 } ↔ 𝑥( ⋖L𝑊)(𝑥 𝑄)))
3331, 32mpbid 231 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑥 𝑄))
34 lmodabl 20085 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3512, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ Abel)
361lsssssubg 20135 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
3712, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑆 ⊆ (SubGrp‘𝑊))
3837, 14sseldd 3918 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ∈ (SubGrp‘𝑊))
3937, 17sseldd 3918 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ∈ (SubGrp‘𝑊))
4018lsmcom 19374 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑥 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → (𝑥 𝑄) = (𝑄 𝑥))
4135, 38, 39, 40syl3anc 1369 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥 𝑄) = (𝑄 𝑥))
4233, 41breqtrd 5096 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑄 𝑥))
43 simp3 1136 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑈)
44 lsatcvat.l . . . . . . 7 (𝜑𝑈 ⊊ (𝑄 𝑅))
45443ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑅))
4618lsmub1 19177 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (SubGrp‘𝑊)) → 𝑄 ⊆ (𝑄 𝑥))
4739, 38, 46syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ⊆ (𝑄 𝑥))
48 lsatcvat.r . . . . . . . . 9 (𝜑𝑅𝐴)
49483ad2ant1 1131 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝐴)
5044pssssd 4028 . . . . . . . . . 10 (𝜑𝑈 ⊆ (𝑄 𝑅))
51503ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊆ (𝑄 𝑅))
5243, 51sstrd 3927 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ⊆ (𝑄 𝑅))
5318, 3, 11, 13, 49, 29, 52, 28lsatexch1 36987 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ⊆ (𝑄 𝑥))
541, 3, 6, 48lsatlssel 36938 . . . . . . . . . 10 (𝜑𝑅𝑆)
55543ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝑆)
5637, 55sseldd 3918 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ∈ (SubGrp‘𝑊))
5737, 20sseldd 3918 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ (SubGrp‘𝑊))
5818lsmlub 19185 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑥) ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
5939, 56, 57, 58syl3anc 1369 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
6047, 53, 59mpbi2and 708 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑅) ⊆ (𝑄 𝑥))
6145, 60psssstrd 4040 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑥))
621, 10, 11, 14, 20, 21, 42, 43, 61lcvnbtwn3 36969 . . . 4 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 = 𝑥)
6362, 13eqeltrd 2839 . . 3 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝐴)
6463rexlimdv3a 3214 . 2 (𝜑 → (∃𝑥𝐴 𝑥𝑈𝑈𝐴))
659, 64mpd 15 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cin 3882  wss 3883  wpss 3884  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  0gc0g 17067  SubGrpcsubg 18664  LSSumclsm 19154  Abelcabl 19302  LModclmod 20038  LSubSpclss 20108  LVecclvec 20279  LSAtomsclsa 36915  L clcv 36959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-oppg 18865  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-lcv 36960
This theorem is referenced by:  lsatcvat  36991
  Copyright terms: Public domain W3C validator