Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvatlem Structured version   Visualization version   GIF version

Theorem lsatcvatlem 37511
Description: Lemma for lsatcvat 37512. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
lsatcvat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lsatcvatlem (𝜑𝑈𝐴)

Proof of Theorem lsatcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lsatcvat.o . . 3 0 = (0g𝑊)
3 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
5 lveclmod 20567 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . 3 (𝜑𝑊 ∈ LMod)
7 lsatcvat.u . . 3 (𝜑𝑈𝑆)
8 lsatcvat.n . . 3 (𝜑𝑈 ≠ { 0 })
91, 2, 3, 6, 7, 8lssatomic 37473 . 2 (𝜑 → ∃𝑥𝐴 𝑥𝑈)
10 eqid 2736 . . . . 5 ( ⋖L𝑊) = ( ⋖L𝑊)
1143ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LVec)
1263ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ LMod)
13 simp2 1137 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝐴)
141, 3, 12, 13lsatlssel 37459 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑆)
15 lsatcvat.q . . . . . . . 8 (𝜑𝑄𝐴)
161, 3, 6, 15lsatlssel 37459 . . . . . . 7 (𝜑𝑄𝑆)
17163ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝑆)
18 lsatcvat.p . . . . . . 7 = (LSSum‘𝑊)
191, 18lsmcl 20544 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑥𝑆) → (𝑄 𝑥) ∈ 𝑆)
2012, 17, 14, 19syl3anc 1371 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ 𝑆)
2173ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝑆)
22 lsatcvat.m . . . . . . . . . 10 (𝜑 → ¬ 𝑄𝑈)
23223ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → ¬ 𝑄𝑈)
24 sseq1 3969 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (𝑥𝑈𝑄𝑈))
2524biimpcd 248 . . . . . . . . . . 11 (𝑥𝑈 → (𝑥 = 𝑄𝑄𝑈))
2625necon3bd 2957 . . . . . . . . . 10 (𝑥𝑈 → (¬ 𝑄𝑈𝑥𝑄))
27263ad2ant3 1135 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → (¬ 𝑄𝑈𝑥𝑄))
2823, 27mpd 15 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑄)
29153ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄𝐴)
302, 3, 11, 13, 29lsatnem0 37507 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄 ↔ (𝑥𝑄) = { 0 }))
3128, 30mpbid 231 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥𝑄) = { 0 })
321, 18, 2, 3, 10, 11, 14, 29lcvp 37502 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑥𝑄) = { 0 } ↔ 𝑥( ⋖L𝑊)(𝑥 𝑄)))
3331, 32mpbid 231 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑥 𝑄))
34 lmodabl 20369 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3512, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑊 ∈ Abel)
361lsssssubg 20419 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
3712, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑆 ⊆ (SubGrp‘𝑊))
3837, 14sseldd 3945 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ∈ (SubGrp‘𝑊))
3937, 17sseldd 3945 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ∈ (SubGrp‘𝑊))
4018lsmcom 19636 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑥 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → (𝑥 𝑄) = (𝑄 𝑥))
4135, 38, 39, 40syl3anc 1371 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑥 𝑄) = (𝑄 𝑥))
4233, 41breqtrd 5131 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥( ⋖L𝑊)(𝑄 𝑥))
43 simp3 1138 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥𝑈)
44 lsatcvat.l . . . . . . 7 (𝜑𝑈 ⊊ (𝑄 𝑅))
45443ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑅))
4618lsmub1 19439 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (SubGrp‘𝑊)) → 𝑄 ⊆ (𝑄 𝑥))
4739, 38, 46syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑄 ⊆ (𝑄 𝑥))
48 lsatcvat.r . . . . . . . . 9 (𝜑𝑅𝐴)
49483ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝐴)
5044pssssd 4057 . . . . . . . . . 10 (𝜑𝑈 ⊆ (𝑄 𝑅))
51503ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊆ (𝑄 𝑅))
5243, 51sstrd 3954 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑥 ⊆ (𝑄 𝑅))
5318, 3, 11, 13, 49, 29, 52, 28lsatexch1 37508 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ⊆ (𝑄 𝑥))
541, 3, 6, 48lsatlssel 37459 . . . . . . . . . 10 (𝜑𝑅𝑆)
55543ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅𝑆)
5637, 55sseldd 3945 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → 𝑅 ∈ (SubGrp‘𝑊))
5737, 20sseldd 3945 . . . . . . . 8 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑥) ∈ (SubGrp‘𝑊))
5818lsmlub 19446 . . . . . . . 8 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑥) ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
5939, 56, 57, 58syl3anc 1371 . . . . . . 7 ((𝜑𝑥𝐴𝑥𝑈) → ((𝑄 ⊆ (𝑄 𝑥) ∧ 𝑅 ⊆ (𝑄 𝑥)) ↔ (𝑄 𝑅) ⊆ (𝑄 𝑥)))
6047, 53, 59mpbi2and 710 . . . . . 6 ((𝜑𝑥𝐴𝑥𝑈) → (𝑄 𝑅) ⊆ (𝑄 𝑥))
6145, 60psssstrd 4069 . . . . 5 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 ⊊ (𝑄 𝑥))
621, 10, 11, 14, 20, 21, 42, 43, 61lcvnbtwn3 37490 . . . 4 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈 = 𝑥)
6362, 13eqeltrd 2838 . . 3 ((𝜑𝑥𝐴𝑥𝑈) → 𝑈𝐴)
6463rexlimdv3a 3156 . 2 (𝜑 → (∃𝑥𝐴 𝑥𝑈𝑈𝐴))
659, 64mpd 15 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cin 3909  wss 3910  wpss 3911  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  0gc0g 17321  SubGrpcsubg 18922  LSSumclsm 19416  Abelcabl 19563  LModclmod 20322  LSubSpclss 20392  LVecclvec 20563  LSAtomsclsa 37436  L clcv 37480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lcv 37481
This theorem is referenced by:  lsatcvat  37512
  Copyright terms: Public domain W3C validator