Step | Hyp | Ref
| Expression |
1 | | lsatcvat.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | | lsatcvat.o |
. . 3
⊢ 0 =
(0g‘𝑊) |
3 | | lsatcvat.a |
. . 3
⊢ 𝐴 = (LSAtoms‘𝑊) |
4 | | lsatcvat.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
5 | | lveclmod 19951 |
. . . 4
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | | lsatcvat.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
8 | | lsatcvat.n |
. . 3
⊢ (𝜑 → 𝑈 ≠ { 0 }) |
9 | 1, 2, 3, 6, 7, 8 | lssatomic 36613 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝑥 ⊆ 𝑈) |
10 | | eqid 2758 |
. . . . 5
⊢ (
⋖L ‘𝑊) = ( ⋖L ‘𝑊) |
11 | 4 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑊 ∈ LVec) |
12 | 6 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑊 ∈ LMod) |
13 | | simp2 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ∈ 𝐴) |
14 | 1, 3, 12, 13 | lsatlssel 36599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ∈ 𝑆) |
15 | | lsatcvat.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
16 | 1, 3, 6, 15 | lsatlssel 36599 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ 𝑆) |
17 | 16 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑄 ∈ 𝑆) |
18 | | lsatcvat.p |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝑊) |
19 | 1, 18 | lsmcl 19928 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆) → (𝑄 ⊕ 𝑥) ∈ 𝑆) |
20 | 12, 17, 14, 19 | syl3anc 1368 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑄 ⊕ 𝑥) ∈ 𝑆) |
21 | 7 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
22 | | lsatcvat.m |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
23 | 22 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) |
24 | | sseq1 3919 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑄 → (𝑥 ⊆ 𝑈 ↔ 𝑄 ⊆ 𝑈)) |
25 | 24 | biimpcd 252 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑈 → (𝑥 = 𝑄 → 𝑄 ⊆ 𝑈)) |
26 | 25 | necon3bd 2965 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑈 → (¬ 𝑄 ⊆ 𝑈 → 𝑥 ≠ 𝑄)) |
27 | 26 | 3ad2ant3 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (¬ 𝑄 ⊆ 𝑈 → 𝑥 ≠ 𝑄)) |
28 | 23, 27 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ≠ 𝑄) |
29 | 15 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
30 | 2, 3, 11, 13, 29 | lsatnem0 36647 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑥 ≠ 𝑄 ↔ (𝑥 ∩ 𝑄) = { 0 })) |
31 | 28, 30 | mpbid 235 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑥 ∩ 𝑄) = { 0 }) |
32 | 1, 18, 2, 3, 10, 11, 14, 29 | lcvp 36642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → ((𝑥 ∩ 𝑄) = { 0 } ↔ 𝑥( ⋖L
‘𝑊)(𝑥 ⊕ 𝑄))) |
33 | 31, 32 | mpbid 235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥( ⋖L ‘𝑊)(𝑥 ⊕ 𝑄)) |
34 | | lmodabl 19754 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
35 | 12, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑊 ∈ Abel) |
36 | 1 | lsssssubg 19803 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
37 | 12, 36 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑆 ⊆ (SubGrp‘𝑊)) |
38 | 37, 14 | sseldd 3895 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ∈ (SubGrp‘𝑊)) |
39 | 37, 17 | sseldd 3895 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑄 ∈ (SubGrp‘𝑊)) |
40 | 18 | lsmcom 19051 |
. . . . . . 7
⊢ ((𝑊 ∈ Abel ∧ 𝑥 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → (𝑥 ⊕ 𝑄) = (𝑄 ⊕ 𝑥)) |
41 | 35, 38, 39, 40 | syl3anc 1368 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑥 ⊕ 𝑄) = (𝑄 ⊕ 𝑥)) |
42 | 33, 41 | breqtrd 5061 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥( ⋖L ‘𝑊)(𝑄 ⊕ 𝑥)) |
43 | | simp3 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ⊆ 𝑈) |
44 | | lsatcvat.l |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
45 | 44 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
46 | 18 | lsmub1 18854 |
. . . . . . . 8
⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (SubGrp‘𝑊)) → 𝑄 ⊆ (𝑄 ⊕ 𝑥)) |
47 | 39, 38, 46 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑄 ⊆ (𝑄 ⊕ 𝑥)) |
48 | | lsatcvat.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
49 | 48 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
50 | 44 | pssssd 4005 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ⊆ (𝑄 ⊕ 𝑅)) |
51 | 50 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 ⊆ (𝑄 ⊕ 𝑅)) |
52 | 43, 51 | sstrd 3904 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑥 ⊆ (𝑄 ⊕ 𝑅)) |
53 | 18, 3, 11, 13, 49, 29, 52, 28 | lsatexch1 36648 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑅 ⊆ (𝑄 ⊕ 𝑥)) |
54 | 1, 3, 6, 48 | lsatlssel 36599 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ 𝑆) |
55 | 54 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑅 ∈ 𝑆) |
56 | 37, 55 | sseldd 3895 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑅 ∈ (SubGrp‘𝑊)) |
57 | 37, 20 | sseldd 3895 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑄 ⊕ 𝑥) ∈ (SubGrp‘𝑊)) |
58 | 18 | lsmlub 18862 |
. . . . . . . 8
⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ (𝑄 ⊕ 𝑥) ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ (𝑄 ⊕ 𝑥) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑥)) ↔ (𝑄 ⊕ 𝑅) ⊆ (𝑄 ⊕ 𝑥))) |
59 | 39, 56, 57, 58 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → ((𝑄 ⊆ (𝑄 ⊕ 𝑥) ∧ 𝑅 ⊆ (𝑄 ⊕ 𝑥)) ↔ (𝑄 ⊕ 𝑅) ⊆ (𝑄 ⊕ 𝑥))) |
60 | 47, 53, 59 | mpbi2and 711 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → (𝑄 ⊕ 𝑅) ⊆ (𝑄 ⊕ 𝑥)) |
61 | 45, 60 | psssstrd 4017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑥)) |
62 | 1, 10, 11, 14, 20, 21, 42, 43, 61 | lcvnbtwn3 36630 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 = 𝑥) |
63 | 62, 13 | eqeltrd 2852 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
64 | 63 | rexlimdv3a 3210 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑥 ⊆ 𝑈 → 𝑈 ∈ 𝐴)) |
65 | 9, 64 | mpd 15 |
1
⊢ (𝜑 → 𝑈 ∈ 𝐴) |