| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatexch | Structured version Visualization version GIF version | ||
| Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32353 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatexch.o | ⊢ 0 = (0g‘𝑊) |
| lsatexch.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatexch.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatexch.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatexch.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatexch.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| lsatexch.z | ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) |
| Ref | Expression |
|---|---|
| lsatexch | ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatexch.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21035 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | lsatexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 4 | lsssssubg 20886 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 7 | lsatexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 6, 7 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | lsatexch.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 10 | lsatexch.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 11 | 4, 9, 3, 10 | lsatlssel 39036 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 12 | 6, 11 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 13 | lsatexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 14 | 13 | lsmub2 19565 | . . 3 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 15 | 8, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 16 | eqid 2731 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 17 | 4, 13 | lsmcl 21012 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 18 | 3, 7, 11, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 19 | lsatexch.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 20 | 4, 9, 3, 19 | lsatlssel 39036 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 21 | 4, 13 | lsmcl 21012 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 22 | 3, 7, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 23 | lsatexch.z | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) | |
| 24 | lsatexch.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 25 | 4, 13, 24, 9, 16, 1, 7, 19 | lcvp 39079 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄))) |
| 26 | 23, 25 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄)) |
| 27 | 4, 16, 1, 7, 22, 26 | lcvpss 39063 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
| 28 | 13 | lsmub1 19564 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 29 | 8, 12, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 30 | lsatexch.l | . . . . . 6 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 31 | 6, 20 | sseldd 3930 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 32 | 6, 18 | sseldd 3930 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 33 | 13 | lsmlub 19571 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 34 | 8, 31, 32, 33 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 35 | 29, 30, 34 | mpbi2and 712 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅)) |
| 36 | 27, 35 | psssstrd 4057 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑅)) |
| 37 | 4, 13, 9, 16, 1, 7, 10 | lcv2 39081 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑅) ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 38 | 36, 37 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 39 | 4, 16, 1, 7, 18, 22, 38, 27, 35 | lcvnbtwn2 39066 | . 2 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ 𝑅)) |
| 40 | 15, 39 | sseqtrrd 3967 | 1 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ⊊ wpss 3898 {csn 4571 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 0gc0g 17338 SubGrpcsubg 19028 LSSumclsm 19541 LModclmod 20788 LSubSpclss 20859 LVecclvec 21031 LSAtomsclsa 39013 ⋖L clcv 39057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19224 df-oppg 19253 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 df-lsatoms 39015 df-lcv 39058 |
| This theorem is referenced by: lsatexch1 39085 |
| Copyright terms: Public domain | W3C validator |