Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatexch | Structured version Visualization version GIF version |
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 30743 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatexch.o | ⊢ 0 = (0g‘𝑊) |
lsatexch.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatexch.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatexch.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatexch.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatexch.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
lsatexch.z | ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) |
Ref | Expression |
---|---|
lsatexch | ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatexch.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 20368 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lsatexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 4 | lsssssubg 20220 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
7 | lsatexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 6, 7 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | lsatexch.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
10 | lsatexch.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
11 | 4, 9, 3, 10 | lsatlssel 37011 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
12 | 6, 11 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
13 | lsatexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
14 | 13 | lsmub2 19263 | . . 3 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
15 | 8, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
16 | eqid 2738 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
17 | 4, 13 | lsmcl 20345 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
18 | 3, 7, 11, 17 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
19 | lsatexch.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
20 | 4, 9, 3, 19 | lsatlssel 37011 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
21 | 4, 13 | lsmcl 20345 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
22 | 3, 7, 20, 21 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
23 | lsatexch.z | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) | |
24 | lsatexch.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
25 | 4, 13, 24, 9, 16, 1, 7, 19 | lcvp 37054 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄))) |
26 | 23, 25 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄)) |
27 | 4, 16, 1, 7, 22, 26 | lcvpss 37038 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
28 | 13 | lsmub1 19262 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
29 | 8, 12, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
30 | lsatexch.l | . . . . . 6 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
31 | 6, 20 | sseldd 3922 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 6, 18 | sseldd 3922 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
33 | 13 | lsmlub 19270 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
34 | 8, 31, 32, 33 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
35 | 29, 30, 34 | mpbi2and 709 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅)) |
36 | 27, 35 | psssstrd 4044 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑅)) |
37 | 4, 13, 9, 16, 1, 7, 10 | lcv2 37056 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑅) ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
38 | 36, 37 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
39 | 4, 16, 1, 7, 18, 22, 38, 27, 35 | lcvnbtwn2 37041 | . 2 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ 𝑅)) |
40 | 15, 39 | sseqtrrd 3962 | 1 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ⊊ wpss 3888 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0gc0g 17150 SubGrpcsubg 18749 LSSumclsm 19239 LModclmod 20123 LSubSpclss 20193 LVecclvec 20364 LSAtomsclsa 36988 ⋖L clcv 37032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lcv 37033 |
This theorem is referenced by: lsatexch1 37060 |
Copyright terms: Public domain | W3C validator |