Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch Structured version   Visualization version   GIF version

Theorem lsatexch 39043
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32317 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatexch.s 𝑆 = (LSubSp‘𝑊)
lsatexch.p = (LSSum‘𝑊)
lsatexch.o 0 = (0g𝑊)
lsatexch.a 𝐴 = (LSAtoms‘𝑊)
lsatexch.w (𝜑𝑊 ∈ LVec)
lsatexch.u (𝜑𝑈𝑆)
lsatexch.q (𝜑𝑄𝐴)
lsatexch.r (𝜑𝑅𝐴)
lsatexch.l (𝜑𝑄 ⊆ (𝑈 𝑅))
lsatexch.z (𝜑 → (𝑈𝑄) = { 0 })
Assertion
Ref Expression
lsatexch (𝜑𝑅 ⊆ (𝑈 𝑄))

Proof of Theorem lsatexch
StepHypRef Expression
1 lsatexch.w . . . . . 6 (𝜑𝑊 ∈ LVec)
2 lveclmod 21020 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsatexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
54lsssssubg 20871 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
63, 5syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
7 lsatexch.u . . . 4 (𝜑𝑈𝑆)
86, 7sseldd 3950 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lsatexch.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
10 lsatexch.r . . . . 5 (𝜑𝑅𝐴)
114, 9, 3, 10lsatlssel 38997 . . . 4 (𝜑𝑅𝑆)
126, 11sseldd 3950 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
13 lsatexch.p . . . 4 = (LSSum‘𝑊)
1413lsmub2 19595 . . 3 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 𝑅))
158, 12, 14syl2anc 584 . 2 (𝜑𝑅 ⊆ (𝑈 𝑅))
16 eqid 2730 . . 3 ( ⋖L𝑊) = ( ⋖L𝑊)
174, 13lsmcl 20997 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
183, 7, 11, 17syl3anc 1373 . . 3 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
19 lsatexch.q . . . . 5 (𝜑𝑄𝐴)
204, 9, 3, 19lsatlssel 38997 . . . 4 (𝜑𝑄𝑆)
214, 13lsmcl 20997 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈 𝑄) ∈ 𝑆)
223, 7, 20, 21syl3anc 1373 . . 3 (𝜑 → (𝑈 𝑄) ∈ 𝑆)
23 lsatexch.z . . . . . . 7 (𝜑 → (𝑈𝑄) = { 0 })
24 lsatexch.o . . . . . . . 8 0 = (0g𝑊)
254, 13, 24, 9, 16, 1, 7, 19lcvp 39040 . . . . . . 7 (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈( ⋖L𝑊)(𝑈 𝑄)))
2623, 25mpbid 232 . . . . . 6 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑄))
274, 16, 1, 7, 22, 26lcvpss 39024 . . . . 5 (𝜑𝑈 ⊊ (𝑈 𝑄))
2813lsmub1 19594 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 𝑅))
298, 12, 28syl2anc 584 . . . . . 6 (𝜑𝑈 ⊆ (𝑈 𝑅))
30 lsatexch.l . . . . . 6 (𝜑𝑄 ⊆ (𝑈 𝑅))
316, 20sseldd 3950 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
326, 18sseldd 3950 . . . . . . 7 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
3313lsmlub 19601 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
348, 31, 32, 33syl3anc 1373 . . . . . 6 (𝜑 → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
3529, 30, 34mpbi2and 712 . . . . 5 (𝜑 → (𝑈 𝑄) ⊆ (𝑈 𝑅))
3627, 35psssstrd 4078 . . . 4 (𝜑𝑈 ⊊ (𝑈 𝑅))
374, 13, 9, 16, 1, 7, 10lcv2 39042 . . . 4 (𝜑 → (𝑈 ⊊ (𝑈 𝑅) ↔ 𝑈( ⋖L𝑊)(𝑈 𝑅)))
3836, 37mpbid 232 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
394, 16, 1, 7, 18, 22, 38, 27, 35lcvnbtwn2 39027 . 2 (𝜑 → (𝑈 𝑄) = (𝑈 𝑅))
4015, 39sseqtrrd 3987 1 (𝜑𝑅 ⊆ (𝑈 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  wpss 3918  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  0gc0g 17409  SubGrpcsubg 19059  LSSumclsm 19571  LModclmod 20773  LSubSpclss 20844  LVecclvec 21016  LSAtomsclsa 38974  L clcv 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lcv 39019
This theorem is referenced by:  lsatexch1  39046
  Copyright terms: Public domain W3C validator