| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatexch | Structured version Visualization version GIF version | ||
| Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32310 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatexch.o | ⊢ 0 = (0g‘𝑊) |
| lsatexch.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatexch.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatexch.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatexch.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatexch.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| lsatexch.z | ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) |
| Ref | Expression |
|---|---|
| lsatexch | ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatexch.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21013 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | lsatexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 4 | lsssssubg 20864 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 7 | lsatexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 6, 7 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | lsatexch.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 10 | lsatexch.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 11 | 4, 9, 3, 10 | lsatlssel 38990 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 12 | 6, 11 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 13 | lsatexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 14 | 13 | lsmub2 19588 | . . 3 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 15 | 8, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 16 | eqid 2729 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 17 | 4, 13 | lsmcl 20990 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 18 | 3, 7, 11, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 19 | lsatexch.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 20 | 4, 9, 3, 19 | lsatlssel 38990 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 21 | 4, 13 | lsmcl 20990 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 22 | 3, 7, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 23 | lsatexch.z | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) | |
| 24 | lsatexch.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 25 | 4, 13, 24, 9, 16, 1, 7, 19 | lcvp 39033 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄))) |
| 26 | 23, 25 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄)) |
| 27 | 4, 16, 1, 7, 22, 26 | lcvpss 39017 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
| 28 | 13 | lsmub1 19587 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 29 | 8, 12, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 30 | lsatexch.l | . . . . . 6 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 31 | 6, 20 | sseldd 3947 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 32 | 6, 18 | sseldd 3947 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 33 | 13 | lsmlub 19594 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 34 | 8, 31, 32, 33 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 35 | 29, 30, 34 | mpbi2and 712 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅)) |
| 36 | 27, 35 | psssstrd 4075 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑅)) |
| 37 | 4, 13, 9, 16, 1, 7, 10 | lcv2 39035 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑅) ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 38 | 36, 37 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 39 | 4, 16, 1, 7, 18, 22, 38, 27, 35 | lcvnbtwn2 39020 | . 2 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ 𝑅)) |
| 40 | 15, 39 | sseqtrrd 3984 | 1 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ⊊ wpss 3915 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0gc0g 17402 SubGrpcsubg 19052 LSSumclsm 19564 LModclmod 20766 LSubSpclss 20837 LVecclvec 21009 LSAtomsclsa 38967 ⋖L clcv 39011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lcv 39012 |
| This theorem is referenced by: lsatexch1 39039 |
| Copyright terms: Public domain | W3C validator |