| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatexch | Structured version Visualization version GIF version | ||
| Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32343 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatexch.o | ⊢ 0 = (0g‘𝑊) |
| lsatexch.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatexch.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatexch.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatexch.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatexch.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
| lsatexch.z | ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) |
| Ref | Expression |
|---|---|
| lsatexch | ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatexch.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21028 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | lsatexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 4 | lsssssubg 20879 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 7 | lsatexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 6, 7 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | lsatexch.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 10 | lsatexch.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 11 | 4, 9, 3, 10 | lsatlssel 38978 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 12 | 6, 11 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 13 | lsatexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 14 | 13 | lsmub2 19555 | . . 3 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 15 | 8, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
| 16 | eqid 2729 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 17 | 4, 13 | lsmcl 21005 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 18 | 3, 7, 11, 17 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
| 19 | lsatexch.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 20 | 4, 9, 3, 19 | lsatlssel 38978 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 21 | 4, 13 | lsmcl 21005 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 22 | 3, 7, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
| 23 | lsatexch.z | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) | |
| 24 | lsatexch.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 25 | 4, 13, 24, 9, 16, 1, 7, 19 | lcvp 39021 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄))) |
| 26 | 23, 25 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄)) |
| 27 | 4, 16, 1, 7, 22, 26 | lcvpss 39005 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
| 28 | 13 | lsmub1 19554 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 29 | 8, 12, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
| 30 | lsatexch.l | . . . . . 6 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
| 31 | 6, 20 | sseldd 3938 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 32 | 6, 18 | sseldd 3938 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
| 33 | 13 | lsmlub 19561 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 34 | 8, 31, 32, 33 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
| 35 | 29, 30, 34 | mpbi2and 712 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅)) |
| 36 | 27, 35 | psssstrd 4065 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑅)) |
| 37 | 4, 13, 9, 16, 1, 7, 10 | lcv2 39023 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑅) ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
| 38 | 36, 37 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
| 39 | 4, 16, 1, 7, 18, 22, 38, 27, 35 | lcvnbtwn2 39008 | . 2 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ 𝑅)) |
| 40 | 15, 39 | sseqtrrd 3975 | 1 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 ⊊ wpss 3906 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0gc0g 17361 SubGrpcsubg 19017 LSSumclsm 19531 LModclmod 20781 LSubSpclss 20852 LVecclvec 21024 LSAtomsclsa 38955 ⋖L clcv 38999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38957 df-lcv 39000 |
| This theorem is referenced by: lsatexch1 39027 |
| Copyright terms: Public domain | W3C validator |