Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch Structured version   Visualization version   GIF version

Theorem lsatexch 36339
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 30164 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatexch.s 𝑆 = (LSubSp‘𝑊)
lsatexch.p = (LSSum‘𝑊)
lsatexch.o 0 = (0g𝑊)
lsatexch.a 𝐴 = (LSAtoms‘𝑊)
lsatexch.w (𝜑𝑊 ∈ LVec)
lsatexch.u (𝜑𝑈𝑆)
lsatexch.q (𝜑𝑄𝐴)
lsatexch.r (𝜑𝑅𝐴)
lsatexch.l (𝜑𝑄 ⊆ (𝑈 𝑅))
lsatexch.z (𝜑 → (𝑈𝑄) = { 0 })
Assertion
Ref Expression
lsatexch (𝜑𝑅 ⊆ (𝑈 𝑄))

Proof of Theorem lsatexch
StepHypRef Expression
1 lsatexch.w . . . . . 6 (𝜑𝑊 ∈ LVec)
2 lveclmod 19871 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsatexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
54lsssssubg 19723 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
63, 5syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
7 lsatexch.u . . . 4 (𝜑𝑈𝑆)
86, 7sseldd 3916 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lsatexch.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
10 lsatexch.r . . . . 5 (𝜑𝑅𝐴)
114, 9, 3, 10lsatlssel 36293 . . . 4 (𝜑𝑅𝑆)
126, 11sseldd 3916 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
13 lsatexch.p . . . 4 = (LSSum‘𝑊)
1413lsmub2 18775 . . 3 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 𝑅))
158, 12, 14syl2anc 587 . 2 (𝜑𝑅 ⊆ (𝑈 𝑅))
16 eqid 2798 . . 3 ( ⋖L𝑊) = ( ⋖L𝑊)
174, 13lsmcl 19848 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
183, 7, 11, 17syl3anc 1368 . . 3 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
19 lsatexch.q . . . . 5 (𝜑𝑄𝐴)
204, 9, 3, 19lsatlssel 36293 . . . 4 (𝜑𝑄𝑆)
214, 13lsmcl 19848 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈 𝑄) ∈ 𝑆)
223, 7, 20, 21syl3anc 1368 . . 3 (𝜑 → (𝑈 𝑄) ∈ 𝑆)
23 lsatexch.z . . . . . . 7 (𝜑 → (𝑈𝑄) = { 0 })
24 lsatexch.o . . . . . . . 8 0 = (0g𝑊)
254, 13, 24, 9, 16, 1, 7, 19lcvp 36336 . . . . . . 7 (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈( ⋖L𝑊)(𝑈 𝑄)))
2623, 25mpbid 235 . . . . . 6 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑄))
274, 16, 1, 7, 22, 26lcvpss 36320 . . . . 5 (𝜑𝑈 ⊊ (𝑈 𝑄))
2813lsmub1 18774 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 𝑅))
298, 12, 28syl2anc 587 . . . . . 6 (𝜑𝑈 ⊆ (𝑈 𝑅))
30 lsatexch.l . . . . . 6 (𝜑𝑄 ⊆ (𝑈 𝑅))
316, 20sseldd 3916 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
326, 18sseldd 3916 . . . . . . 7 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
3313lsmlub 18782 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
348, 31, 32, 33syl3anc 1368 . . . . . 6 (𝜑 → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
3529, 30, 34mpbi2and 711 . . . . 5 (𝜑 → (𝑈 𝑄) ⊆ (𝑈 𝑅))
3627, 35psssstrd 4037 . . . 4 (𝜑𝑈 ⊊ (𝑈 𝑅))
374, 13, 9, 16, 1, 7, 10lcv2 36338 . . . 4 (𝜑 → (𝑈 ⊊ (𝑈 𝑅) ↔ 𝑈( ⋖L𝑊)(𝑈 𝑅)))
3836, 37mpbid 235 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
394, 16, 1, 7, 18, 22, 38, 27, 35lcvnbtwn2 36323 . 2 (𝜑 → (𝑈 𝑄) = (𝑈 𝑅))
4015, 39sseqtrrd 3956 1 (𝜑𝑅 ⊆ (𝑈 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cin 3880  wss 3881  wpss 3882  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  0gc0g 16705  SubGrpcsubg 18265  LSSumclsm 18751  LModclmod 19627  LSubSpclss 19696  LVecclvec 19867  LSAtomsclsa 36270  L clcv 36314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lcv 36315
This theorem is referenced by:  lsatexch1  36342
  Copyright terms: Public domain W3C validator