Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch Structured version   Visualization version   GIF version

Theorem lsatexch 39009
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32283 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatexch.s 𝑆 = (LSubSp‘𝑊)
lsatexch.p = (LSSum‘𝑊)
lsatexch.o 0 = (0g𝑊)
lsatexch.a 𝐴 = (LSAtoms‘𝑊)
lsatexch.w (𝜑𝑊 ∈ LVec)
lsatexch.u (𝜑𝑈𝑆)
lsatexch.q (𝜑𝑄𝐴)
lsatexch.r (𝜑𝑅𝐴)
lsatexch.l (𝜑𝑄 ⊆ (𝑈 𝑅))
lsatexch.z (𝜑 → (𝑈𝑄) = { 0 })
Assertion
Ref Expression
lsatexch (𝜑𝑅 ⊆ (𝑈 𝑄))

Proof of Theorem lsatexch
StepHypRef Expression
1 lsatexch.w . . . . . 6 (𝜑𝑊 ∈ LVec)
2 lveclmod 20989 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsatexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
54lsssssubg 20840 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
63, 5syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
7 lsatexch.u . . . 4 (𝜑𝑈𝑆)
86, 7sseldd 3944 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lsatexch.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
10 lsatexch.r . . . . 5 (𝜑𝑅𝐴)
114, 9, 3, 10lsatlssel 38963 . . . 4 (𝜑𝑅𝑆)
126, 11sseldd 3944 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
13 lsatexch.p . . . 4 = (LSSum‘𝑊)
1413lsmub2 19564 . . 3 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 𝑅))
158, 12, 14syl2anc 584 . 2 (𝜑𝑅 ⊆ (𝑈 𝑅))
16 eqid 2729 . . 3 ( ⋖L𝑊) = ( ⋖L𝑊)
174, 13lsmcl 20966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
183, 7, 11, 17syl3anc 1373 . . 3 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
19 lsatexch.q . . . . 5 (𝜑𝑄𝐴)
204, 9, 3, 19lsatlssel 38963 . . . 4 (𝜑𝑄𝑆)
214, 13lsmcl 20966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈 𝑄) ∈ 𝑆)
223, 7, 20, 21syl3anc 1373 . . 3 (𝜑 → (𝑈 𝑄) ∈ 𝑆)
23 lsatexch.z . . . . . . 7 (𝜑 → (𝑈𝑄) = { 0 })
24 lsatexch.o . . . . . . . 8 0 = (0g𝑊)
254, 13, 24, 9, 16, 1, 7, 19lcvp 39006 . . . . . . 7 (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈( ⋖L𝑊)(𝑈 𝑄)))
2623, 25mpbid 232 . . . . . 6 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑄))
274, 16, 1, 7, 22, 26lcvpss 38990 . . . . 5 (𝜑𝑈 ⊊ (𝑈 𝑄))
2813lsmub1 19563 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 𝑅))
298, 12, 28syl2anc 584 . . . . . 6 (𝜑𝑈 ⊆ (𝑈 𝑅))
30 lsatexch.l . . . . . 6 (𝜑𝑄 ⊆ (𝑈 𝑅))
316, 20sseldd 3944 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
326, 18sseldd 3944 . . . . . . 7 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
3313lsmlub 19570 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
348, 31, 32, 33syl3anc 1373 . . . . . 6 (𝜑 → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
3529, 30, 34mpbi2and 712 . . . . 5 (𝜑 → (𝑈 𝑄) ⊆ (𝑈 𝑅))
3627, 35psssstrd 4071 . . . 4 (𝜑𝑈 ⊊ (𝑈 𝑅))
374, 13, 9, 16, 1, 7, 10lcv2 39008 . . . 4 (𝜑 → (𝑈 ⊊ (𝑈 𝑅) ↔ 𝑈( ⋖L𝑊)(𝑈 𝑅)))
3836, 37mpbid 232 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
394, 16, 1, 7, 18, 22, 38, 27, 35lcvnbtwn2 38993 . 2 (𝜑 → (𝑈 𝑄) = (𝑈 𝑅))
4015, 39sseqtrrd 3981 1 (𝜑𝑅 ⊆ (𝑈 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  wpss 3912  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  0gc0g 17378  SubGrpcsubg 19028  LSSumclsm 19540  LModclmod 20742  LSubSpclss 20813  LVecclvec 20985  LSAtomsclsa 38940  L clcv 38984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lcv 38985
This theorem is referenced by:  lsatexch1  39012
  Copyright terms: Public domain W3C validator