| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwpwpw0 | Structured version Visualization version GIF version | ||
| Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4764 and pwpw0 4765.) (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| pwpwpw0 | ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwpr 4853 | 1 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 ∅c0 4283 𝒫 cpw 4550 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-pw 4552 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |