![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpwpw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4815 and pwpw0 4816.) (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
pwpwpw0 | ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpr 4902 | 1 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∪ cun 3946 ∅c0 4322 𝒫 cpw 4602 {csn 4628 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-pw 4604 df-sn 4629 df-pr 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |