MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwpw0 Structured version   Visualization version   GIF version

Theorem pwpwpw0 4855
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4764 and pwpw0 4765.) (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
pwpwpw0 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})

Proof of Theorem pwpwpw0
StepHypRef Expression
1 pwpr 4853 1 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3900  c0 4283  𝒫 cpw 4550  {csn 4576  {cpr 4578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-pw 4552  df-sn 4577  df-pr 4579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator