MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwpw0 Structured version   Visualization version   GIF version

Theorem pwpwpw0 4904
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4815 and pwpw0 4816.) (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
pwpwpw0 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})

Proof of Theorem pwpwpw0
StepHypRef Expression
1 pwpr 4902 1 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  c0 4322  𝒫 cpw 4602  {csn 4628  {cpr 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-pw 4604  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator