![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpwpw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4837 and pwpw0 4838.) (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
pwpwpw0 | ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpr 4925 | 1 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |