![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwpwpw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4478 and pwpw0 4479.) (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
pwpwpw0 | ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpr 4568 | 1 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∪ cun 3721 ∅c0 4063 𝒫 cpw 4297 {csn 4316 {cpr 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-pw 4299 df-sn 4317 df-pr 4319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |