MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwpw0 Structured version   Visualization version   GIF version

Theorem pwpwpw0 4927
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4837 and pwpw0 4838.) (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
pwpwpw0 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})

Proof of Theorem pwpwpw0
StepHypRef Expression
1 pwpr 4925 1 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator