MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwpw0 Structured version   Visualization version   GIF version

Theorem pwpwpw0 4898
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 4810 and pwpw0 4811.) (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
pwpwpw0 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})

Proof of Theorem pwpwpw0
StepHypRef Expression
1 pwpr 4896 1 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3941  c0 4317  𝒫 cpw 4597  {csn 4623  {cpr 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-pw 4599  df-sn 4624  df-pr 4626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator