| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwpr | Structured version Visualization version GIF version | ||
| Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.) |
| Ref | Expression |
|---|---|
| pwpr | ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspr 4784 | . . . 4 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr 4598 | . . . . 5 ⊢ (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) |
| 4 | 2 | elpr 4598 | . . . . 5 ⊢ (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) |
| 5 | 3, 4 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 6 | 1, 5 | bitr4i 278 | . . 3 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) |
| 7 | velpw 4552 | . . 3 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵}) | |
| 8 | elun 4100 | . . 3 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})) |
| 10 | 9 | eqriv 2728 | 1 ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: pwpwpw0 4852 ord3ex 5323 hash2pwpr 14383 pr2pwpr 14386 prsiga 34144 prsal 46426 |
| Copyright terms: Public domain | W3C validator |