MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpr Structured version   Visualization version   GIF version

Theorem pwpr 4900
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.)
Assertion
Ref Expression
pwpr 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})

Proof of Theorem pwpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspr 4834 . . . 4 (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
2 vex 3483 . . . . . 6 𝑥 ∈ V
32elpr 4649 . . . . 5 (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
42elpr 4649 . . . . 5 (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
53, 4orbi12i 914 . . . 4 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
61, 5bitr4i 278 . . 3 (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
7 velpw 4604 . . 3 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵})
8 elun 4152 . . 3 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
96, 7, 83bitr4i 303 . 2 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
109eqriv 2733 1 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1539  wcel 2107  cun 3948  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625  {cpr 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-pw 4601  df-sn 4626  df-pr 4628
This theorem is referenced by:  pwpwpw0  4902  ord3ex  5386  hash2pwpr  14516  pr2pwpr  14519  prsiga  34133  prsal  46338
  Copyright terms: Public domain W3C validator