|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pwpr | Structured version Visualization version GIF version | ||
| Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.) | 
| Ref | Expression | 
|---|---|
| pwpr | ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sspr 4834 | . . . 4 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) | |
| 2 | vex 3483 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr 4649 | . . . . 5 ⊢ (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | 
| 4 | 2 | elpr 4649 | . . . . 5 ⊢ (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) | 
| 5 | 3, 4 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) | 
| 6 | 1, 5 | bitr4i 278 | . . 3 ⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | 
| 7 | velpw 4604 | . . 3 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵}) | |
| 8 | elun 4152 | . . 3 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})) | 
| 10 | 9 | eqriv 2733 | 1 ⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 𝒫 cpw 4599 {csn 4625 {cpr 4627 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-pw 4601 df-sn 4626 df-pr 4628 | 
| This theorem is referenced by: pwpwpw0 4902 ord3ex 5386 hash2pwpr 14516 pr2pwpr 14519 prsiga 34133 prsal 46338 | 
| Copyright terms: Public domain | W3C validator |