MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpr Structured version   Visualization version   GIF version

Theorem pwpr 4882
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.)
Assertion
Ref Expression
pwpr 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})

Proof of Theorem pwpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspr 4816 . . . 4 (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
2 vex 3468 . . . . . 6 𝑥 ∈ V
32elpr 4631 . . . . 5 (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
42elpr 4631 . . . . 5 (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
53, 4orbi12i 914 . . . 4 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
61, 5bitr4i 278 . . 3 (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
7 velpw 4585 . . 3 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵})
8 elun 4133 . . 3 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
96, 7, 83bitr4i 303 . 2 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
109eqriv 2733 1 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  cun 3929  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609
This theorem is referenced by:  pwpwpw0  4884  ord3ex  5362  hash2pwpr  14499  pr2pwpr  14502  prsiga  34167  prsal  46327
  Copyright terms: Public domain W3C validator