MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwtp Structured version   Visualization version   GIF version

Theorem pwtp 4795
Description: The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
pwtp 𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}))

Proof of Theorem pwtp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velpw 4502 . . 3 (𝑥 ∈ 𝒫 {𝐴, 𝐵, 𝐶} ↔ 𝑥 ⊆ {𝐴, 𝐵, 𝐶})
2 elun 4076 . . . . . 6 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
3 vex 3444 . . . . . . . 8 𝑥 ∈ V
43elpr 4548 . . . . . . 7 (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
53elpr 4548 . . . . . . 7 (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
64, 5orbi12i 912 . . . . . 6 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
72, 6bitri 278 . . . . 5 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
8 elun 4076 . . . . . 6 (𝑥 ∈ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}) ↔ (𝑥 ∈ {{𝐶}, {𝐴, 𝐶}} ∨ 𝑥 ∈ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}))
93elpr 4548 . . . . . . 7 (𝑥 ∈ {{𝐶}, {𝐴, 𝐶}} ↔ (𝑥 = {𝐶} ∨ 𝑥 = {𝐴, 𝐶}))
103elpr 4548 . . . . . . 7 (𝑥 ∈ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}} ↔ (𝑥 = {𝐵, 𝐶} ∨ 𝑥 = {𝐴, 𝐵, 𝐶}))
119, 10orbi12i 912 . . . . . 6 ((𝑥 ∈ {{𝐶}, {𝐴, 𝐶}} ∨ 𝑥 ∈ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}) ↔ ((𝑥 = {𝐶} ∨ 𝑥 = {𝐴, 𝐶}) ∨ (𝑥 = {𝐵, 𝐶} ∨ 𝑥 = {𝐴, 𝐵, 𝐶})))
128, 11bitri 278 . . . . 5 (𝑥 ∈ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}) ↔ ((𝑥 = {𝐶} ∨ 𝑥 = {𝐴, 𝐶}) ∨ (𝑥 = {𝐵, 𝐶} ∨ 𝑥 = {𝐴, 𝐵, 𝐶})))
137, 12orbi12i 912 . . . 4 ((𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∨ 𝑥 ∈ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) ↔ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∨ ((𝑥 = {𝐶} ∨ 𝑥 = {𝐴, 𝐶}) ∨ (𝑥 = {𝐵, 𝐶} ∨ 𝑥 = {𝐴, 𝐵, 𝐶}))))
14 elun 4076 . . . 4 (𝑥 ∈ (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) ↔ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∨ 𝑥 ∈ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})))
15 sstp 4727 . . . 4 (𝑥 ⊆ {𝐴, 𝐵, 𝐶} ↔ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∨ ((𝑥 = {𝐶} ∨ 𝑥 = {𝐴, 𝐶}) ∨ (𝑥 = {𝐵, 𝐶} ∨ 𝑥 = {𝐴, 𝐵, 𝐶}))))
1613, 14, 153bitr4ri 307 . . 3 (𝑥 ⊆ {𝐴, 𝐵, 𝐶} ↔ 𝑥 ∈ (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})))
171, 16bitri 278 . 2 (𝑥 ∈ 𝒫 {𝐴, 𝐵, 𝐶} ↔ 𝑥 ∈ (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})))
1817eqriv 2795 1 𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}))
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1538  wcel 2111  cun 3879  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  {cpr 4527  {ctp 4529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530
This theorem is referenced by:  ex-pw  28214
  Copyright terms: Public domain W3C validator