MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  univ Structured version   Visualization version   GIF version

Theorem univ 5392
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ V = V

Proof of Theorem univ
StepHypRef Expression
1 pwv 4856 . . 3 𝒫 V = V
21unieqi 4871 . 2 𝒫 V = V
3 unipw 5391 . 2 𝒫 V = V
42, 3eqtr3i 2756 1 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  𝒫 cpw 4550   cuni 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919  df-pw 4552  df-sn 4577  df-pr 4579  df-uni 4860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator