MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  univ Structured version   Visualization version   GIF version

Theorem univ 5431
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ V = V

Proof of Theorem univ
StepHypRef Expression
1 pwv 4885 . . 3 𝒫 V = V
21unieqi 4900 . 2 𝒫 V = V
3 unipw 5430 . 2 𝒫 V = V
42, 3eqtr3i 2761 1 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  𝒫 cpw 4580   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator