Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > univ | Structured version Visualization version GIF version |
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
univ | ⊢ ∪ V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwv 4833 | . . 3 ⊢ 𝒫 V = V | |
2 | 1 | unieqi 4849 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
3 | unipw 5359 | . 2 ⊢ ∪ 𝒫 V = V | |
4 | 2, 3 | eqtr3i 2769 | 1 ⊢ ∪ V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Vcvv 3423 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |