MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  univ Structured version   Visualization version   GIF version

Theorem univ 5441
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ V = V

Proof of Theorem univ
StepHypRef Expression
1 pwv 4896 . . 3 𝒫 V = V
21unieqi 4911 . 2 𝒫 V = V
3 unipw 5440 . 2 𝒫 V = V
42, 3eqtr3i 2754 1 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3466  𝒫 cpw 4594   cuni 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3945  df-in 3947  df-ss 3957  df-pw 4596  df-sn 4621  df-pr 4623  df-uni 4900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator