Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > univ | Structured version Visualization version GIF version |
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
univ | ⊢ ∪ V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwv 4836 | . . 3 ⊢ 𝒫 V = V | |
2 | 1 | unieqi 4852 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
3 | unipw 5366 | . 2 ⊢ ∪ 𝒫 V = V | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ ∪ V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |