MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  univ Structured version   Visualization version   GIF version

Theorem univ 5455
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ V = V

Proof of Theorem univ
StepHypRef Expression
1 pwv 4903 . . 3 𝒫 V = V
21unieqi 4918 . 2 𝒫 V = V
3 unipw 5454 . 2 𝒫 V = V
42, 3eqtr3i 2766 1 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3479  𝒫 cpw 4599   cuni 4906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-ss 3967  df-pw 4601  df-sn 4626  df-pr 4628  df-uni 4907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator