Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > univ | Structured version Visualization version GIF version |
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
univ | ⊢ ∪ V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwv 4795 | . . 3 ⊢ 𝒫 V = V | |
2 | 1 | unieqi 4811 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
3 | unipw 5311 | . 2 ⊢ ∪ 𝒫 V = V | |
4 | 2, 3 | eqtr3i 2783 | 1 ⊢ ∪ V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 Vcvv 3409 𝒫 cpw 4494 ∪ cuni 4798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-pw 4496 df-sn 4523 df-pr 4525 df-uni 4799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |