Proof of Theorem prproe
Step | Hyp | Ref
| Expression |
1 | | elpri 4671 |
. . 3
⊢ (𝐶 ∈ {𝐴, 𝐵} → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) |
2 | | eleq1 2832 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵})) |
3 | | simprrr 781 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ 𝑉) |
4 | | necom 3000 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
5 | | neeq2 3010 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
6 | 5 | eqcoms 2748 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐴 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
7 | 6 | biimpcd 249 |
. . . . . . . . . 10
⊢ (𝐵 ≠ 𝐴 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
8 | 4, 7 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
10 | 9 | impcom 407 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ≠ 𝐶) |
11 | 3, 10 | eldifsnd 4812 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ (𝑉 ∖ {𝐶})) |
12 | | prid2g 4786 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
13 | 12 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝐴, 𝐵}) |
14 | 13 | ad2antll 728 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ {𝐴, 𝐵}) |
15 | 2, 11, 14 | rspcedvdw 3638 |
. . . . 5
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
16 | 15 | ex 412 |
. . . 4
⊢ (𝐶 = 𝐴 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
17 | | eleq1 2832 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵})) |
18 | | simprrl 780 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ 𝑉) |
19 | | neeq2 3010 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐶 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
20 | 19 | eqcoms 2748 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐵 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
21 | 20 | biimpcd 249 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
23 | 22 | impcom 407 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ≠ 𝐶) |
24 | 18, 23 | eldifsnd 4812 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ (𝑉 ∖ {𝐶})) |
25 | | prid1g 4785 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵}) |
27 | 26 | ad2antll 728 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ {𝐴, 𝐵}) |
28 | 17, 24, 27 | rspcedvdw 3638 |
. . . . 5
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
29 | 28 | ex 412 |
. . . 4
⊢ (𝐶 = 𝐵 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
30 | 16, 29 | jaoi 856 |
. . 3
⊢ ((𝐶 = 𝐴 ∨ 𝐶 = 𝐵) → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
31 | 1, 30 | syl 17 |
. 2
⊢ (𝐶 ∈ {𝐴, 𝐵} → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
32 | 31 | 3impib 1116 |
1
⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |