Proof of Theorem prproe
| Step | Hyp | Ref
| Expression |
| 1 | | elpri 4649 |
. . 3
⊢ (𝐶 ∈ {𝐴, 𝐵} → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) |
| 2 | | eleq1 2829 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵})) |
| 3 | | simprrr 782 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ 𝑉) |
| 4 | | necom 2994 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| 5 | | neeq2 3004 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
| 6 | 5 | eqcoms 2745 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐴 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) |
| 7 | 6 | biimpcd 249 |
. . . . . . . . . 10
⊢ (𝐵 ≠ 𝐴 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 8 | 4, 7 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐴 → 𝐵 ≠ 𝐶)) |
| 10 | 9 | impcom 407 |
. . . . . . 7
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ≠ 𝐶) |
| 11 | 3, 10 | eldifsnd 4787 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ (𝑉 ∖ {𝐶})) |
| 12 | | prid2g 4761 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| 13 | 12 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝐴, 𝐵}) |
| 14 | 13 | ad2antll 729 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐵 ∈ {𝐴, 𝐵}) |
| 15 | 2, 11, 14 | rspcedvdw 3625 |
. . . . 5
⊢ ((𝐶 = 𝐴 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
| 16 | 15 | ex 412 |
. . . 4
⊢ (𝐶 = 𝐴 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 17 | | eleq1 2829 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵})) |
| 18 | | simprrl 781 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ 𝑉) |
| 19 | | neeq2 3004 |
. . . . . . . . . . 11
⊢ (𝐵 = 𝐶 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 20 | 19 | eqcoms 2745 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐵 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 21 | 20 | biimpcd 249 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐵 → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐶 = 𝐵 → 𝐴 ≠ 𝐶)) |
| 23 | 22 | impcom 407 |
. . . . . . 7
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ≠ 𝐶) |
| 24 | 18, 23 | eldifsnd 4787 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ (𝑉 ∖ {𝐶})) |
| 25 | | prid1g 4760 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵}) |
| 27 | 26 | ad2antll 729 |
. . . . . 6
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → 𝐴 ∈ {𝐴, 𝐵}) |
| 28 | 17, 24, 27 | rspcedvdw 3625 |
. . . . 5
⊢ ((𝐶 = 𝐵 ∧ (𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |
| 29 | 28 | ex 412 |
. . . 4
⊢ (𝐶 = 𝐵 → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 30 | 16, 29 | jaoi 858 |
. . 3
⊢ ((𝐶 = 𝐴 ∨ 𝐶 = 𝐵) → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 31 | 1, 30 | syl 17 |
. 2
⊢ (𝐶 ∈ {𝐴, 𝐵} → ((𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})) |
| 32 | 31 | 3impib 1117 |
1
⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) |