MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prproe Structured version   Visualization version   GIF version

Theorem prproe 4835
Description: For an element of a proper unordered pair of elements of a class 𝑉, there is another (different) element of the class 𝑉 which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.)
Assertion
Ref Expression
prproe ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐶   𝑣,𝑉

Proof of Theorem prproe
StepHypRef Expression
1 elpri 4586 . . 3 (𝐶 ∈ {𝐴, 𝐵} → (𝐶 = 𝐴𝐶 = 𝐵))
2 simprrr 778 . . . . . . 7 ((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐵𝑉)
3 necom 3074 . . . . . . . . . 10 (𝐴𝐵𝐵𝐴)
4 neeq2 3084 . . . . . . . . . . . 12 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
54eqcoms 2834 . . . . . . . . . . 11 (𝐶 = 𝐴 → (𝐵𝐴𝐵𝐶))
65biimpcd 250 . . . . . . . . . 10 (𝐵𝐴 → (𝐶 = 𝐴𝐵𝐶))
73, 6sylbi 218 . . . . . . . . 9 (𝐴𝐵 → (𝐶 = 𝐴𝐵𝐶))
87adantr 481 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → (𝐶 = 𝐴𝐵𝐶))
98impcom 408 . . . . . . 7 ((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐵𝐶)
10 eldifsn 4718 . . . . . . 7 (𝐵 ∈ (𝑉 ∖ {𝐶}) ↔ (𝐵𝑉𝐵𝐶))
112, 9, 10sylanbrc 583 . . . . . 6 ((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐵 ∈ (𝑉 ∖ {𝐶}))
12 eleq1 2905 . . . . . . 7 (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵}))
1312adantl 482 . . . . . 6 (((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) ∧ 𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐵 ∈ {𝐴, 𝐵}))
14 prid2g 4696 . . . . . . . . 9 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
1514adantl 482 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ {𝐴, 𝐵})
1615adantl 482 . . . . . . 7 ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → 𝐵 ∈ {𝐴, 𝐵})
1716adantl 482 . . . . . 6 ((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐵 ∈ {𝐴, 𝐵})
1811, 13, 17rspcedvd 3630 . . . . 5 ((𝐶 = 𝐴 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})
1918ex 413 . . . 4 (𝐶 = 𝐴 → ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}))
20 simprrl 777 . . . . . . 7 ((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐴𝑉)
21 neeq2 3084 . . . . . . . . . . 11 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
2221eqcoms 2834 . . . . . . . . . 10 (𝐶 = 𝐵 → (𝐴𝐵𝐴𝐶))
2322biimpcd 250 . . . . . . . . 9 (𝐴𝐵 → (𝐶 = 𝐵𝐴𝐶))
2423adantr 481 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → (𝐶 = 𝐵𝐴𝐶))
2524impcom 408 . . . . . . 7 ((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐴𝐶)
26 eldifsn 4718 . . . . . . 7 (𝐴 ∈ (𝑉 ∖ {𝐶}) ↔ (𝐴𝑉𝐴𝐶))
2720, 25, 26sylanbrc 583 . . . . . 6 ((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐴 ∈ (𝑉 ∖ {𝐶}))
28 eleq1 2905 . . . . . . 7 (𝑣 = 𝐴 → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵}))
2928adantl 482 . . . . . 6 (((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) ∧ 𝑣 = 𝐴) → (𝑣 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐴, 𝐵}))
30 prid1g 4695 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
3130adantr 481 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ {𝐴, 𝐵})
3231adantl 482 . . . . . . 7 ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → 𝐴 ∈ {𝐴, 𝐵})
3332adantl 482 . . . . . 6 ((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → 𝐴 ∈ {𝐴, 𝐵})
3427, 29, 33rspcedvd 3630 . . . . 5 ((𝐶 = 𝐵 ∧ (𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉))) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})
3534ex 413 . . . 4 (𝐶 = 𝐵 → ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}))
3619, 35jaoi 853 . . 3 ((𝐶 = 𝐴𝐶 = 𝐵) → ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}))
371, 36syl 17 . 2 (𝐶 ∈ {𝐴, 𝐵} → ((𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}))
38373impib 1110 1 ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wrex 3144  cdif 3937  {csn 4564  {cpr 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-v 3502  df-dif 3943  df-un 3945  df-sn 4565  df-pr 4567
This theorem is referenced by:  edglnl  26861
  Copyright terms: Public domain W3C validator