MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Structured version   Visualization version   GIF version

Theorem ncanth 7091
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 5183). Specifically, the identity function maps the universe onto its power class. Compare canth 7090 that works for sets.

This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3719): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4797). See also the remark in ru 3719 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.)

Assertion
Ref Expression
ncanth I :V–onto→𝒫 V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 6628 . . 3 I :V–1-1-onto→V
2 f1ofo 6597 . . 3 ( I :V–1-1-onto→V → I :V–onto→V)
31, 2ax-mp 5 . 2 I :V–onto→V
4 pwv 4797 . . 3 𝒫 V = V
5 foeq3 6563 . . 3 (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V))
64, 5ax-mp 5 . 2 ( I :V–onto→𝒫 V ↔ I :V–onto→V)
73, 6mpbir 234 1 I :V–onto→𝒫 V
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  Vcvv 3441  𝒫 cpw 4497   I cid 5424  ontowfo 6322  1-1-ontowf1o 6323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator