| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncanth | Structured version Visualization version GIF version | ||
| Description: Cantor's theorem fails
for the universal class (which is not a set but a
proper class by vprc 5251). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7300 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3734): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4853). See also the remark in ru 3734 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
| Ref | Expression |
|---|---|
| ncanth | ⊢ I :V–onto→𝒫 V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ovi 6802 | . . 3 ⊢ I :V–1-1-onto→V | |
| 2 | f1ofo 6770 | . . 3 ⊢ ( I :V–1-1-onto→V → I :V–onto→V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ I :V–onto→V |
| 4 | pwv 4853 | . . 3 ⊢ 𝒫 V = V | |
| 5 | foeq3 6733 | . . 3 ⊢ (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ( I :V–onto→𝒫 V ↔ I :V–onto→V) |
| 7 | 3, 6 | mpbir 231 | 1 ⊢ I :V–onto→𝒫 V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 𝒫 cpw 4547 I cid 5508 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |