Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncanth | Structured version Visualization version GIF version |
Description: Cantor's theorem fails
for the universal class (which is not a set but a
proper class by vprc 5267). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7299 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3733): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4857). See also the remark in ru 3733 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
Ref | Expression |
---|---|
ncanth | ⊢ I :V–onto→𝒫 V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ovi 6815 | . . 3 ⊢ I :V–1-1-onto→V | |
2 | f1ofo 6783 | . . 3 ⊢ ( I :V–1-1-onto→V → I :V–onto→V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ I :V–onto→V |
4 | pwv 4857 | . . 3 ⊢ 𝒫 V = V | |
5 | foeq3 6746 | . . 3 ⊢ (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ( I :V–onto→𝒫 V ↔ I :V–onto→V) |
7 | 3, 6 | mpbir 230 | 1 ⊢ I :V–onto→𝒫 V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Vcvv 3443 𝒫 cpw 4555 I cid 5524 –onto→wfo 6486 –1-1-onto→wf1o 6487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-br 5101 df-opab 5163 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |