Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncanth | Structured version Visualization version GIF version |
Description: Cantor's theorem fails
for the universal class (which is not a set but a
proper class by vprc 5242). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7222 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3718): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4841). See also the remark in ru 3718 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
Ref | Expression |
---|---|
ncanth | ⊢ I :V–onto→𝒫 V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ovi 6750 | . . 3 ⊢ I :V–1-1-onto→V | |
2 | f1ofo 6719 | . . 3 ⊢ ( I :V–1-1-onto→V → I :V–onto→V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ I :V–onto→V |
4 | pwv 4841 | . . 3 ⊢ 𝒫 V = V | |
5 | foeq3 6682 | . . 3 ⊢ (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ( I :V–onto→𝒫 V ↔ I :V–onto→V) |
7 | 3, 6 | mpbir 230 | 1 ⊢ I :V–onto→𝒫 V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Vcvv 3430 𝒫 cpw 4538 I cid 5487 –onto→wfo 6428 –1-1-onto→wf1o 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |