MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Structured version   Visualization version   GIF version

Theorem ncanth 7386
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 5321). Specifically, the identity function maps the universe onto its power class. Compare canth 7385 that works for sets.

This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3789): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4909). See also the remark in ru 3789 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.)

Assertion
Ref Expression
ncanth I :V–onto→𝒫 V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 6888 . . 3 I :V–1-1-onto→V
2 f1ofo 6856 . . 3 ( I :V–1-1-onto→V → I :V–onto→V)
31, 2ax-mp 5 . 2 I :V–onto→V
4 pwv 4909 . . 3 𝒫 V = V
5 foeq3 6819 . . 3 (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V))
64, 5ax-mp 5 . 2 ( I :V–onto→𝒫 V ↔ I :V–onto→V)
73, 6mpbir 231 1 I :V–onto→𝒫 V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  Vcvv 3478  𝒫 cpw 4605   I cid 5582  ontowfo 6561  1-1-ontowf1o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator