MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Structured version   Visualization version   GIF version

Theorem ncanth 7301
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 5251). Specifically, the identity function maps the universe onto its power class. Compare canth 7300 that works for sets.

This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3734): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4853). See also the remark in ru 3734 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.)

Assertion
Ref Expression
ncanth I :V–onto→𝒫 V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 6802 . . 3 I :V–1-1-onto→V
2 f1ofo 6770 . . 3 ( I :V–1-1-onto→V → I :V–onto→V)
31, 2ax-mp 5 . 2 I :V–onto→V
4 pwv 4853 . . 3 𝒫 V = V
5 foeq3 6733 . . 3 (𝒫 V = V → ( I :V–onto→𝒫 V ↔ I :V–onto→V))
64, 5ax-mp 5 . 2 ( I :V–onto→𝒫 V ↔ I :V–onto→V)
73, 6mpbir 231 1 I :V–onto→𝒫 V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  Vcvv 3436  𝒫 cpw 4547   I cid 5508  ontowfo 6479  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator