MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Structured version   Visualization version   GIF version

Theorem ncanth 7363
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 5316). Specifically, the identity function maps the universe onto its power class. Compare canth 7362 that works for sets.

This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3777): š’« V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto š’« V (see pwv 4906). See also the remark in ru 3777 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.)

Assertion
Ref Expression
ncanth I :Vā€“ontoā†’š’« V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 6873 . . 3 I :Vā€“1-1-ontoā†’V
2 f1ofo 6841 . . 3 ( I :Vā€“1-1-ontoā†’V ā†’ I :Vā€“ontoā†’V)
31, 2ax-mp 5 . 2 I :Vā€“ontoā†’V
4 pwv 4906 . . 3 š’« V = V
5 foeq3 6804 . . 3 (š’« V = V ā†’ ( I :Vā€“ontoā†’š’« V ā†” I :Vā€“ontoā†’V))
64, 5ax-mp 5 . 2 ( I :Vā€“ontoā†’š’« V ā†” I :Vā€“ontoā†’V)
73, 6mpbir 230 1 I :Vā€“ontoā†’š’« V
Colors of variables: wff setvar class
Syntax hints:   ā†” wb 205   = wceq 1542  Vcvv 3475  š’« cpw 4603   I cid 5574  ā€“ontoā†’wfo 6542  ā€“1-1-ontoā†’wf1o 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator