MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en4 Structured version   Visualization version   GIF version

Theorem en4 8985
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en4 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐴

Proof of Theorem en4
StepHypRef Expression
1 3onn 8434 . 2 3o ∈ ω
2 df-4o 8270 . 2 4o = suc 3o
3 en3 8984 . 2 ((𝐴 ∖ {𝑥}) ≈ 3o → ∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤})
4 qdassr 4687 . . . . 5 ({𝑥, 𝑦} ∪ {𝑧, 𝑤}) = ({𝑥} ∪ {𝑦, 𝑧, 𝑤})
54enp1ilem 8981 . . . 4 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
65eximdv 1921 . . 3 (𝑥𝐴 → (∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
762eximdv 1923 . 2 (𝑥𝐴 → (∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
81, 2, 3, 7enp1i 8982 1 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  cdif 3880  cun 3881  {csn 4558  {cpr 4560  {ctp 4562   class class class wbr 5070  3oc3o 8262  4oc4o 8263  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-3o 8269  df-4o 8270  df-er 8456  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator