MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en4 Structured version   Visualization version   GIF version

Theorem en4 9161
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en4 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐴

Proof of Theorem en4
StepHypRef Expression
1 ord3 8395 . 2 Ord 3o
2 df-4o 8383 . 2 4o = suc 3o
3 en3 9160 . 2 ((𝐴 ∖ {𝑥}) ≈ 3o → ∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤})
4 qdassr 4702 . . . . 5 ({𝑥, 𝑦} ∪ {𝑧, 𝑤}) = ({𝑥} ∪ {𝑦, 𝑧, 𝑤})
54enp1ilem 9157 . . . 4 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
65eximdv 1918 . . 3 (𝑥𝐴 → (∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
762eximdv 1920 . 2 (𝑥𝐴 → (∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
81, 2, 3, 7enp1i 9158 1 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  cdif 3894  cun 3895  {csn 4571  {cpr 4573  {ctp 4575   class class class wbr 5086  3oc3o 8375  4oc4o 8376  cen 8861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-1o 8380  df-2o 8381  df-3o 8382  df-4o 8383  df-en 8865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator