| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en4 | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en4 | ⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord3 8395 | . 2 ⊢ Ord 3o | |
| 2 | df-4o 8383 | . 2 ⊢ 4o = suc 3o | |
| 3 | en3 9160 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 3o → ∃𝑦∃𝑧∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤}) | |
| 4 | qdassr 4702 | . . . . 5 ⊢ ({𝑥, 𝑦} ∪ {𝑧, 𝑤}) = ({𝑥} ∪ {𝑦, 𝑧, 𝑤}) | |
| 5 | 4 | enp1ilem 9157 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))) |
| 6 | 5 | eximdv 1918 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))) |
| 7 | 6 | 2eximdv 1920 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦∃𝑧∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))) |
| 8 | 1, 2, 3, 7 | enp1i 9158 | 1 ⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 {csn 4571 {cpr 4573 {ctp 4575 class class class wbr 5086 3oc3o 8375 4oc4o 8376 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-1o 8380 df-2o 8381 df-3o 8382 df-4o 8383 df-en 8865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |