![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | fveq2i 6449 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ‘cfv 6135 Cℋ cch 28358 ⊥cort 28359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |