HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr4i Structured version   Visualization version   GIF version

Theorem qlaxr4i 30874
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr4.1 𝐴C
qlaxr4.2 𝐵C
qlaxr4.3 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr4i (⊥‘𝐴) = (⊥‘𝐵)

Proof of Theorem qlaxr4i
StepHypRef Expression
1 qlaxr4.3 . 2 𝐴 = 𝐵
21fveq2i 6891 1 (⊥‘𝐴) = (⊥‘𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cfv 6540   C cch 30169  cort 30170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator