Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | fveq2i 6759 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Cℋ cch 29192 ⊥cort 29193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |