![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | fveq2i 6923 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Cℋ cch 30961 ⊥cort 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |