Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | fveq2i 6786 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 ‘cfv 6437 Cℋ cch 29300 ⊥cort 29301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |