HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr4i Structured version   Visualization version   GIF version

Theorem qlaxr4i 30005
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr4.1 𝐴C
qlaxr4.2 𝐵C
qlaxr4.3 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr4i (⊥‘𝐴) = (⊥‘𝐵)

Proof of Theorem qlaxr4i
StepHypRef Expression
1 qlaxr4.3 . 2 𝐴 = 𝐵
21fveq2i 6786 1 (⊥‘𝐴) = (⊥‘𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  cfv 6437   C cch 29300  cort 29301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-iota 6395  df-fv 6445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator