HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr4i Structured version   Visualization version   GIF version

Theorem qlaxr4i 31536
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr4.1 𝐴C
qlaxr4.2 𝐵C
qlaxr4.3 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr4i (⊥‘𝐴) = (⊥‘𝐵)

Proof of Theorem qlaxr4i
StepHypRef Expression
1 qlaxr4.3 . 2 𝐴 = 𝐵
21fveq2i 6843 1 (⊥‘𝐴) = (⊥‘𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6499   C cch 30831  cort 30832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator