| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version | ||
| Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
| qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
| qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | fveq2i 6825 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6482 Cℋ cch 30873 ⊥cort 30874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |