![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > qlaxr4i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr4.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr4.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr4.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr4i | ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr4.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | fveq2i 6893 | 1 ⊢ (⊥‘𝐴) = (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ‘cfv 6542 Cℋ cch 30449 ⊥cort 30450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |