HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr5i Structured version   Visualization version   GIF version

Theorem qlaxr5i 30883
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr5.1 𝐴C
qlaxr5.2 𝐵C
qlaxr5.3 𝐶C
qlaxr5.4 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr5i (𝐴 𝐶) = (𝐵 𝐶)

Proof of Theorem qlaxr5i
StepHypRef Expression
1 qlaxr5.4 . 2 𝐴 = 𝐵
21oveq1i 7418 1 (𝐴 𝐶) = (𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  (class class class)co 7408   C cch 30177   chj 30181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator