Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > qlaxr5i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr5.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr5.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr5.3 | ⊢ 𝐶 ∈ Cℋ |
qlaxr5.4 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr5i | ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr5.4 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | oveq1i 7285 | 1 ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 Cℋ cch 29291 ∨ℋ chj 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |