HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr5i Structured version   Visualization version   GIF version

Theorem qlaxr5i 31579
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr5.1 𝐴C
qlaxr5.2 𝐵C
qlaxr5.3 𝐶C
qlaxr5.4 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr5i (𝐴 𝐶) = (𝐵 𝐶)

Proof of Theorem qlaxr5i
StepHypRef Expression
1 qlaxr5.4 . 2 𝐴 = 𝐵
21oveq1i 7359 1 (𝐴 𝐶) = (𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7349   C cch 30873   chj 30877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator