| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > qlaxr5i | Structured version Visualization version GIF version | ||
| Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| qlaxr5.1 | ⊢ 𝐴 ∈ Cℋ |
| qlaxr5.2 | ⊢ 𝐵 ∈ Cℋ |
| qlaxr5.3 | ⊢ 𝐶 ∈ Cℋ |
| qlaxr5.4 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| qlaxr5i | ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlaxr5.4 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | oveq1i 7356 | 1 ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 Cℋ cch 30909 ∨ℋ chj 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |