HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr5i Structured version   Visualization version   GIF version

Theorem qlaxr5i 29898
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr5.1 𝐴C
qlaxr5.2 𝐵C
qlaxr5.3 𝐶C
qlaxr5.4 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr5i (𝐴 𝐶) = (𝐵 𝐶)

Proof of Theorem qlaxr5i
StepHypRef Expression
1 qlaxr5.4 . 2 𝐴 = 𝐵
21oveq1i 7265 1 (𝐴 𝐶) = (𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255   C cch 29192   chj 29196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator