Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qseq Structured version   Visualization version   GIF version

Theorem qseq 38635
Description: The quotient set equal to a class.

This theorem is used when a class 𝐴 is identified with a quotient (dom 𝑅 / 𝑅). In such a situation, every element 𝑢𝐴 is an 𝑅-coset [𝑣]𝑅 for some 𝑣 ∈ dom 𝑅, but there is no requirement that the "witness" 𝑣 be equal to its own block [𝑣]𝑅. 𝐴 is a set of blocks (equivalence classes), not a set of raw witnesses. In particular, when (dom 𝑅 / 𝑅) = 𝐴 is read together with a partition hypothesis 𝑅 Part 𝐴 (defined as dfpart2 38756), 𝐴 is being treated as the set of blocks [𝑣]𝑅; it does not assert any fixed-point condition 𝑣 = [𝑣]𝑅 such as would arise from the mistaken reading 𝑢𝐴𝑢 = [𝑢]𝑅. Cf. dmqsblocks 38840. (Contributed by Peter Mazsa, 19-Oct-2018.)

Assertion
Ref Expression
qseq ((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣𝐵 𝑢 = [𝑣]𝑅))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵,𝑣   𝑢,𝑅,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem qseq
StepHypRef Expression
1 df-qs 8679 . . 3 (𝐵 / 𝑅) = {𝑢 ∣ ∃𝑣𝐵 𝑢 = [𝑣]𝑅}
21eqeq2i 2743 . 2 (𝐴 = (𝐵 / 𝑅) ↔ 𝐴 = {𝑢 ∣ ∃𝑣𝐵 𝑢 = [𝑣]𝑅})
3 eqcom 2737 . 2 (𝐴 = (𝐵 / 𝑅) ↔ (𝐵 / 𝑅) = 𝐴)
4 eqabb 2868 . 2 (𝐴 = {𝑢 ∣ ∃𝑣𝐵 𝑢 = [𝑣]𝑅} ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣𝐵 𝑢 = [𝑣]𝑅))
52, 3, 43bitr3i 301 1 ((𝐵 / 𝑅) = 𝐴 ↔ ∀𝑢(𝑢𝐴 ↔ ∃𝑣𝐵 𝑢 = [𝑣]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  [cec 8671   / cqs 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-qs 8679
This theorem is referenced by:  dmqsblocks  38840
  Copyright terms: Public domain W3C validator