Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0eldmqseq Structured version   Visualization version   GIF version

Theorem n0eldmqseq 38820
Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.)
Assertion
Ref Expression
n0eldmqseq ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)

Proof of Theorem n0eldmqseq
StepHypRef Expression
1 n0eldmqs 38818 . 2 ¬ ∅ ∈ (dom 𝑅 / 𝑅)
2 eleq2 2822 . 2 ((dom 𝑅 / 𝑅) = 𝐴 → (∅ ∈ (dom 𝑅 / 𝑅) ↔ ∅ ∈ 𝐴))
31, 2mtbii 326 1 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  c0 4282  dom cdm 5621   / cqs 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637
This theorem is referenced by:  n0el3  38822  fences3  39001  mainer  39005
  Copyright terms: Public domain W3C validator