![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0eldmqseq | Structured version Visualization version GIF version |
Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.) |
Ref | Expression |
---|---|
n0eldmqseq | ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0eldmqs 38044 | . 2 ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) | |
2 | eleq2 2817 | . 2 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → (∅ ∈ (dom 𝑅 / 𝑅) ↔ ∅ ∈ 𝐴)) | |
3 | 1, 2 | mtbii 326 | 1 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4318 dom cdm 5672 / cqs 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8718 df-qs 8722 |
This theorem is referenced by: n0el3 38047 fences3 38226 mainer 38230 |
Copyright terms: Public domain | W3C validator |