Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0eldmqseq Structured version   Visualization version   GIF version

Theorem n0eldmqseq 37519
Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.)
Assertion
Ref Expression
n0eldmqseq ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)

Proof of Theorem n0eldmqseq
StepHypRef Expression
1 n0eldmqs 37518 . 2 ¬ ∅ ∈ (dom 𝑅 / 𝑅)
2 eleq2 2823 . 2 ((dom 𝑅 / 𝑅) = 𝐴 → (∅ ∈ (dom 𝑅 / 𝑅) ↔ ∅ ∈ 𝐴))
31, 2mtbii 326 1 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  c0 4323  dom cdm 5677   / cqs 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705  df-qs 8709
This theorem is referenced by:  n0el3  37521  fences3  37700  mainer  37704
  Copyright terms: Public domain W3C validator