Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0eldmqs Structured version   Visualization version   GIF version

Theorem n0eldmqs 38650
Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.)
Assertion
Ref Expression
n0eldmqs ¬ ∅ ∈ (dom 𝑅 / 𝑅)

Proof of Theorem n0eldmqs
StepHypRef Expression
1 ssid 4005 . 2 dom 𝑅 ⊆ dom 𝑅
2 n0elqs 38328 . 2 (¬ ∅ ∈ (dom 𝑅 / 𝑅) ↔ dom 𝑅 ⊆ dom 𝑅)
31, 2mpbir 231 1 ¬ ∅ ∈ (dom 𝑅 / 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  wss 3950  c0 4332  dom cdm 5684   / cqs 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ec 8748  df-qs 8752
This theorem is referenced by:  n0eldmqseq  38651
  Copyright terms: Public domain W3C validator