| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0eldmqs | Structured version Visualization version GIF version | ||
| Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.) |
| Ref | Expression |
|---|---|
| n0eldmqs | ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ dom 𝑅 ⊆ dom 𝑅 | |
| 2 | n0elqs 38370 | . 2 ⊢ (¬ ∅ ∈ (dom 𝑅 / 𝑅) ↔ dom 𝑅 ⊆ dom 𝑅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4282 dom cdm 5619 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 |
| This theorem is referenced by: n0eldmqseq 38753 |
| Copyright terms: Public domain | W3C validator |