Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0eldmqs Structured version   Visualization version   GIF version

Theorem n0eldmqs 36688
Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.)
Assertion
Ref Expression
n0eldmqs ¬ ∅ ∈ (dom 𝑅 / 𝑅)

Proof of Theorem n0eldmqs
StepHypRef Expression
1 ssid 3939 . 2 dom 𝑅 ⊆ dom 𝑅
2 n0elqs 36388 . 2 (¬ ∅ ∈ (dom 𝑅 / 𝑅) ↔ dom 𝑅 ⊆ dom 𝑅)
31, 2mpbir 230 1 ¬ ∅ ∈ (dom 𝑅 / 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  wss 3883  c0 4253  dom cdm 5580   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-qs 8462
This theorem is referenced by:  n0eldmqseq  36689
  Copyright terms: Public domain W3C validator