![]() |
Metamath
Proof Explorer Theorem List (p. 390 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lhple 38901 | Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((π β¨ π) β§ π) = π) | ||
Theorem | lhpat 38902 | Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β ((π β¨ π) β§ π) β π΄) | ||
Theorem | lhpat4N 38903 | Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β€ π)) β ((π β¨ π) β§ π) = π) | ||
Theorem | lhpat2 38904 | Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) | ||
Theorem | lhpat3 38905 | There is only one atom under both π β¨ π and co-atom π. (Contributed by NM, 21-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ π β€ (π β¨ π))) β (Β¬ π β€ π β π β π )) | ||
Theorem | 4atexlemk 38906 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β πΎ β HL) | ||
Theorem | 4atexlemw 38907 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π») | ||
Theorem | 4atexlempw 38908 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β (π β π΄ β§ Β¬ π β€ π)) | ||
Theorem | 4atexlemp 38909 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π΄) | ||
Theorem | 4atexlemq 38910 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π΄) | ||
Theorem | 4atexlems 38911 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π΄) | ||
Theorem | 4atexlemt 38912 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π΄) | ||
Theorem | 4atexlemutvt 38913 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β (π β¨ π) = (π β¨ π)) | ||
Theorem | 4atexlempnq 38914 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β π β π) | ||
Theorem | 4atexlemnslpq 38915 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β Β¬ π β€ (π β¨ π)) | ||
Theorem | 4atexlemkl 38916 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β πΎ β Lat) | ||
Theorem | 4atexlemkc 38917 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β β’ (π β πΎ β CvLat) | ||
Theorem | 4atexlemwb 38918 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ π» = (LHypβπΎ) β β’ (π β π β (BaseβπΎ)) | ||
Theorem | 4atexlempsb 38919 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (π β (π β¨ π) β (BaseβπΎ)) | ||
Theorem | 4atexlemqtb 38920 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (π β (π β¨ π) β (BaseβπΎ)) | ||
Theorem | 4atexlempns 38921 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (π β π β π) | ||
Theorem | 4atexlemswapqr 38922 | Lemma for 4atexlem7 38934. Swap π and π , so that theorems involving πΆ can be reused for π·. Note that π must be expanded because it involves π. (Contributed by NM, 25-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((π β¨ π) β§ π) β β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)) β§ (π β π΄ β§ (((π β¨ π ) β§ π) β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π )))) | ||
Theorem | 4atexlemu 38923 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) β β’ (π β π β π΄) | ||
Theorem | 4atexlemv 38924 | Lemma for 4atexlem7 38934. (Contributed by NM, 23-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) β β’ (π β π β π΄) | ||
Theorem | 4atexlemunv 38925 | Lemma for 4atexlem7 38934. (Contributed by NM, 21-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) β β’ (π β π β π) | ||
Theorem | 4atexlemtlw 38926 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) β β’ (π β π β€ π) | ||
Theorem | 4atexlemntlpq 38927 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) β β’ (π β Β¬ π β€ (π β¨ π)) | ||
Theorem | 4atexlemc 38928 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) & β’ πΆ = ((π β¨ π) β§ (π β¨ π)) β β’ (π β πΆ β π΄) | ||
Theorem | 4atexlemnclw 38929 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) & β’ πΆ = ((π β¨ π) β§ (π β¨ π)) β β’ (π β Β¬ πΆ β€ π) | ||
Theorem | 4atexlemex2 38930* | Lemma for 4atexlem7 38934. Show that when πΆ β π, πΆ satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) & β’ πΆ = ((π β¨ π) β§ (π β¨ π)) β β’ ((π β§ πΆ β π) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atexlemcnd 38931 | Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) & β’ πΆ = ((π β¨ π) β§ (π β¨ π)) & β’ π· = ((π β¨ π) β§ (π β¨ π)) β β’ (π β πΆ β π·) | ||
Theorem | 4atexlemex4 38932* | Lemma for 4atexlem7 38934. Show that when πΆ = π, π· satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.) |
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((π β¨ π) β§ π) & β’ π = ((π β¨ π) β§ π) & β’ πΆ = ((π β¨ π) β§ (π β¨ π)) & β’ π· = ((π β¨ π) β§ (π β¨ π)) β β’ ((π β§ πΆ = π) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atexlemex6 38933* | Lemma for 4atexlem7 38934. (Contributed by NM, 25-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β¨ π ) = (π β¨ π ) β§ π β π β§ Β¬ π β€ (π β¨ π))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atexlem7 38934* | Whenever there are at least 4 atoms under π β¨ π (specifically, π, π, π, and (π β¨ π) β§ π), there are also at least 4 atoms under π β¨ π. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p β¨ q/0 and hence p β¨ s/0 contains at least four atoms..." Note that by cvlsupr2 38201, our (π β¨ π) = (π β¨ π) is a shorter way to express π β π β§ π β π β§ π β€ (π β¨ π). With a longer proof, the condition Β¬ π β€ (π β¨ π) could be eliminated (see 4atex 38935), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex 38935* | Whenever there are at least 4 atoms under π β¨ π (specifically, π, π, π, and (π β¨ π) β§ π), there are also at least 4 atoms under π β¨ π. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p β¨ q/0 and hence p β¨ s/0 contains at least four atoms..." Note that by cvlsupr2 38201, our (π β¨ π) = (π β¨ π) is a shorter way to express π β π β§ π β π β§ π β€ (π β¨ π). (Contributed by NM, 27-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ (π β π β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2 38936* | More general version of 4atex 38935 for a line π β¨ π not necessarily connected to π β¨ π. (Contributed by NM, 27-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π β π΄ β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0aOLDN 38937* | Same as 4atex2 38936 except that π is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π = (0.βπΎ)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0bOLDN 38938* | Same as 4atex2 38936 except that π is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π = (0.βπΎ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0cOLDN 38939* | Same as 4atex2 38936 except that π and π are zero. TODO: do we need this one or 4atex2-0aOLDN 38937 or 4atex2-0bOLDN 38938? (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π = (0.βπΎ)) β§ (π β π β§ π = (0.βπΎ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex3 38940* | More general version of 4atex 38935 for a line π β¨ π not necessarily connected to π β¨ π. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ π β π) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π)))) | ||
Theorem | lautset 38941* | The set of lattice automorphisms. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β πΌ = {π β£ (π:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (πβπ₯) β€ (πβπ¦)))}) | ||
Theorem | islaut 38942* | The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β (πΉ β πΌ β (πΉ:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦))))) | ||
Theorem | lautle 38943 | Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) | ||
Theorem | laut1o 38944 | A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | laut11 38945 | One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β π = π)) | ||
Theorem | lautcl 38946 | A lattice automorphism value belongs to the base set. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (πΉβπ) β π΅) | ||
Theorem | lautcnvclN 38947 | Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (β‘πΉβπ) β π΅) | ||
Theorem | lautcnvle 38948 | Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β (π β€ π β (β‘πΉβπ) β€ (β‘πΉβπ))) | ||
Theorem | lautcnv 38949 | The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π β§ πΉ β πΌ) β β‘πΉ β πΌ) | ||
Theorem | lautlt 38950 | Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (π < π β (πΉβπ) < (πΉβπ))) | ||
Theorem | lautcvr 38951 | Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) | ||
Theorem | lautj 38952 | Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β Lat β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (πΉβ(π β¨ π)) = ((πΉβπ) β¨ (πΉβπ))) | ||
Theorem | lautm 38953 | Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β Lat β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (πΉβ(π β§ π)) = ((πΉβπ) β§ (πΉβπ))) | ||
Theorem | lauteq 38954* | A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β HL β§ πΉ β πΌ β§ π β π΅) β§ βπ β π΄ (πΉβπ) = π) β (πΉβπ) = π) | ||
Theorem | idlaut 38955 | The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β ( I βΎ π΅) β πΌ) | ||
Theorem | lautco 38956 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π β§ πΉ β πΌ β§ πΊ β πΌ) β (πΉ β πΊ) β πΌ) | ||
Theorem | pautsetN 38957* | The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PAutβπΎ) β β’ (πΎ β π΅ β π = {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ β π¦ β (πβπ₯) β (πβπ¦)))}) | ||
Theorem | ispautN 38958* | The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PAutβπΎ) β β’ (πΎ β π΅ β (πΉ β π β (πΉ:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ β π¦ β (πΉβπ₯) β (πΉβπ¦))))) | ||
Syntax | cldil 38959 | Extend class notation with set of all lattice dilations. |
class LDil | ||
Syntax | cltrn 38960 | Extend class notation with set of all lattice translations. |
class LTrn | ||
Syntax | cdilN 38961 | Extend class notation with set of all dilations. |
class Dil | ||
Syntax | ctrnN 38962 | Extend class notation with set of all translations. |
class Trn | ||
Definition | df-ldil 38963* | Define set of all lattice dilations. Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ LDil = (π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) | ||
Definition | df-ltrn 38964* | Define set of all lattice translations. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ LTrn = (π β V β¦ (π€ β (LHypβπ) β¦ {π β ((LDilβπ)βπ€) β£ βπ β (Atomsβπ)βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ Β¬ π(leβπ)π€) β ((π(joinβπ)(πβπ))(meetβπ)π€) = ((π(joinβπ)(πβπ))(meetβπ)π€))})) | ||
Definition | df-dilN 38965* | Define set of all dilations. Definition of dilation in [Crawley] p. 111. (Contributed by NM, 30-Jan-2012.) |
β’ Dil = (π β V β¦ (π β (Atomsβπ) β¦ {π β (PAutβπ) β£ βπ₯ β (PSubSpβπ)(π₯ β ((WAtomsβπ)βπ) β (πβπ₯) = π₯)})) | ||
Definition | df-trnN 38966* | Define set of all translations. Definition of translation in [Crawley] p. 111. (Contributed by NM, 4-Feb-2012.) |
β’ Trn = (π β V β¦ (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β© ((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β© ((β₯πβπ)β{π}))})) | ||
Theorem | ldilfset 38967* | The mapping from fiducial co-atom π€ to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β πΆ β (LDilβπΎ) = (π€ β π» β¦ {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)})) | ||
Theorem | ldilset 38968* | The set of lattice dilations for a fiducial co-atom π. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β πΆ β§ π β π») β π· = {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯)}) | ||
Theorem | isldil 38969* | The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β πΆ β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)))) | ||
Theorem | ldillaut 38970 | A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) | ||
Theorem | ldil1o 38971 | A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | ldilval 38972 | Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) | ||
Theorem | idldil 38973 | The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β π΄ β§ π β π») β ( I βΎ π΅) β π·) | ||
Theorem | ldilcnv 38974 | The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π·) β β‘πΉ β π·) | ||
Theorem | ldilco 38975 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ πΊ β π·) β (πΉ β πΊ) β π·) | ||
Theorem | ltrnfset 38976* | The set of all lattice translations for a lattice πΎ. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β πΆ β (LTrnβπΎ) = (π€ β π» β¦ {π β ((LDilβπΎ)βπ€) β£ βπ β π΄ βπ β π΄ ((Β¬ π β€ π€ β§ Β¬ π β€ π€) β ((π β¨ (πβπ)) β§ π€) = ((π β¨ (πβπ)) β§ π€))})) | ||
Theorem | ltrnset 38977* | The set of lattice translations for a fiducial co-atom π. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β π = {π β π· β£ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π) β ((π β¨ (πβπ)) β§ π) = ((π β¨ (πβπ)) β§ π))}) | ||
Theorem | isltrn 38978* | The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β (πΉ β π β (πΉ β π· β§ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π))))) | ||
Theorem | isltrn2N 38979* | The predicate "is a lattice translation". Version of isltrn 38978 that considers only different π and π. TODO: Can this eliminate some separate proofs for the π = π case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β (πΉ β π β (πΉ β π· β§ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π β§ π β π) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π))))) | ||
Theorem | ltrnu 38980 | Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom π. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((((πΎ β π β§ π β π») β§ πΉ β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π)) | ||
Theorem | ltrnldil 38981 | A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β π·) | ||
Theorem | ltrnlaut 38982 | A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β πΌ) | ||
Theorem | ltrn1o 38983 | A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | ltrncl 38984 | Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β (πΉβπ) β π΅) | ||
Theorem | ltrn11 38985 | One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β π = π)) | ||
Theorem | ltrncnvnid 38986 | If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β β‘πΉ β ( I βΎ π΅)) | ||
Theorem | ltrncoidN 38987 | Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((πΉ β β‘πΊ) = ( I βΎ π΅) β πΉ = πΊ)) | ||
Theorem | ltrnle 38988 | Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) | ||
Theorem | ltrncnvleN 38989 | Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (β‘πΉβπ) β€ (β‘πΉβπ))) | ||
Theorem | ltrnm 38990 | Lattice translation of a meet. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π β§ π)) = ((πΉβπ) β§ (πΉβπ))) | ||
Theorem | ltrnj 38991 | Lattice translation of a meet. TODO: change antecedent to πΎ β HL (Contributed by NM, 25-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π β¨ π)) = ((πΉβπ) β¨ (πΉβπ))) | ||
Theorem | ltrncvr 38992 | Covering property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) | ||
Theorem | ltrnval1 38993 | Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) | ||
Theorem | ltrnid 38994* | A lattice translation is the identity function iff all atoms not under the fiducial co-atom π are equal to their values. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ β π΄ (Β¬ π β€ π β (πΉβπ) = π) β πΉ = ( I βΎ π΅))) | ||
Theorem | ltrnnid 38995* | If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom π and not equal to its translation. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π)) | ||
Theorem | ltrnatb 38996 | The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (πΉβπ) β π΄)) | ||
Theorem | ltrncnvatb 38997 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (β‘πΉβπ) β π΄)) | ||
Theorem | ltrnel 38998 | The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) | ||
Theorem | ltrnat 38999 | The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 38998 uses. (Contributed by NM, 25-May-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (πΉβπ) β π΄) | ||
Theorem | ltrncnvat 39000 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 9-May-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (β‘πΉβπ) β π΄) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |