![]() |
Metamath
Proof Explorer Theorem List (p. 390 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dmtrcl 38901* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
Theorem | rntrcl 38902* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
Theorem | dfrtrcl5 38903* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) | ||
Theorem | trcleq2lemRP 38904 | Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
Theorem | al3im 38905 | Version of ax-4 1853 for a nested implication. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑥(𝜑 → (𝜓 → (𝜒 → 𝜃))) → (∀𝑥𝜑 → (∀𝑥𝜓 → (∀𝑥𝜒 → ∀𝑥𝜃)))) | ||
Theorem | intima0 38906* | Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | elimaint 38907* | Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
Theorem | csbcog 38908 | Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | cnviun 38909* | Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 | ||
Theorem | imaiun1 38910* | The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) | ||
Theorem | coiun1 38911* | Composition with an indexed union. Proof analgous to that of coiun 5901. (Contributed by RP, 20-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐶 𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | elintima 38912* | Element of intersection of images. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
Theorem | intimass 38913* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | intimass2 38914* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) | ||
Theorem | intimag 38915* | Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) | ||
Theorem | intimasn 38916* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | ||
Theorem | intimasn2 38917* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) | ||
Theorem | ss2iundf 38918* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | ss2iundv 38919* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | cbviuneq12df 38920* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | cbviuneq12dv 38921* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | conrel1d 38922 | Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) | ||
Theorem | conrel2d 38923 | Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | ||
Theorem | trrelind 38924 | The intersection of transitive relations is a transitive relation. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) & ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) ⇒ ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) | ||
Theorem | xpintrreld 38925 | The intersection of a transitive relation with a cross product is a transitve relation. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
Theorem | restrreld 38926 | The restriction of a transitive relation is a transitive relation. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
Theorem | trrelsuperreldg 38927 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
Theorem | trficl 38928* | The class of all transitive relations has the finite intersection property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof shortened by Richard Penner, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | cnvtrrel 38929 | The converse of a transitive relation is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.) |
⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) | ||
Theorem | trrelsuperrel2dg 38930 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.) |
⊢ (𝜑 → 𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
Syntax | crcl 38931 | Extend class notation with reflexive closure. |
class r* | ||
Definition | df-rcl 38932* | Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) | ||
Theorem | dfrcl2 38933 | Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) | ||
Theorem | dfrcl3 38934 | Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ((𝑥↑𝑟0) ∪ (𝑥↑𝑟1))) | ||
Theorem | dfrcl4 38935* | Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) | ||
In order for theorems on the transitive closure of a relation to be grouped together before the concept of continuity, we really need an analogue of ↑𝑟 that works on finite ordinals or finite sets instead of natural numbers. | ||
Theorem | relexp2 38936 | A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟2) = (𝑅 ∘ 𝑅)) | ||
Theorem | relexpnul 38937 | If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ Rel 𝑅) ∧ (𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)) → ((dom (𝑅↑𝑟𝑁) ∩ ran (𝑅↑𝑟𝑀)) = ∅ ↔ (𝑅↑𝑟(𝑁 + 𝑀)) = ∅)) | ||
Theorem | eliunov2 38938* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 14208. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | eltrclrec 38939* | Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | elrtrclrec 38940* | Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | briunov2 38941* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | brmptiunrelexpd 38942* | If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 14208. (Contributed by RP, 21-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvmptiunrelexplb0d 38943* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb0da 38944* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb1d 38945* | If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 1 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝐶‘𝑅)) | ||
Theorem | brfvid 38946 | If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | brfvidRP 38947 | If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 38942. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | fvilbd 38948 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | fvilbdRP 38949 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | brfvrcld 38950 | If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) | ||
Theorem | brfvrcld2 38951 | If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) | ||
Theorem | fvrcllb0d 38952 | A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb0da 38953 | A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb1d 38954 | A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (r*‘𝑅)) | ||
Theorem | brtrclrec 38955* | Two classes related by the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | brrtrclrec 38956* | Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | briunov2uz 38957* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | eliunov2uz 38958* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | ov2ssiunov2 38959* | Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14209 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) | ||
Theorem | relexp0eq 38960 | The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) | ||
Theorem | iunrelexp0 38961* | Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexpxpnnidm 38962 | Any positive power of a cross product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) | ||
Theorem | relexpiidm 38963 | Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) | ||
Theorem | relexpss1d 38964 | The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) | ||
Theorem | comptiunov2i 38965* | The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.) |
⊢ 𝑋 = (𝑎 ∈ V ↦ ∪ 𝑖 ∈ 𝐼 (𝑎 ↑ 𝑖)) & ⊢ 𝑌 = (𝑏 ∈ V ↦ ∪ 𝑗 ∈ 𝐽 (𝑏 ↑ 𝑗)) & ⊢ 𝑍 = (𝑐 ∈ V ↦ ∪ 𝑘 ∈ 𝐾 (𝑐 ↑ 𝑘)) & ⊢ 𝐼 ∈ V & ⊢ 𝐽 ∈ V & ⊢ 𝐾 = (𝐼 ∪ 𝐽) & ⊢ ∪ 𝑘 ∈ 𝐼 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑘 ∈ 𝐽 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) ⊆ ∪ 𝑘 ∈ (𝐼 ∪ 𝐽)(𝑑 ↑ 𝑘) ⇒ ⊢ (𝑋 ∘ 𝑌) = 𝑍 | ||
Theorem | corclrcl 38966 | The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ r*) = r* | ||
Theorem | iunrelexpmin1 38967* | The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∀𝑠((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexpmulnn 38968 | With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexpmulg 38969 | With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽 ≤ 𝐾)) ∧ (𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | trclrelexplem 38970* | The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁)) | ||
Theorem | iunrelexpmin2 38971* | The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexp01min 38972 | With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexp1idm 38973 | Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) | ||
Theorem | relexp0idm 38974 | Repeated raising a relation to the zeroth power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟0)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexp0a 38975 | Absorbtion law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0)) | ||
Theorem | relexpxpmin 38976 | The composition of powers of a cross-product of non-disjoint sets is the cross product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) | ||
Theorem | relexpaddss 38977 | The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 14205 or when the sum of the powers isn't 1 as shown by relexpaddg 14204. (Contributed by RP, 3-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) ⊆ (𝑅↑𝑟(𝑁 + 𝑀))) | ||
Theorem | iunrelexpuztr 38978* | The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14211. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | dftrcl3 38979* | Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.) |
⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | ||
Theorem | brfvtrcld 38980* | If two elements are connected by the transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some counting number 𝑛. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvtrcllb1d 38981 | A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t+‘𝑅)) | ||
Theorem | trclfvcom 38982 | The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) | ||
Theorem | cnvtrclfv 38983 | The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) | ||
Theorem | cotrcltrcl 38984 | The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.) |
⊢ (t+ ∘ t+) = t+ | ||
Theorem | trclimalb2 38985 | Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵) | ||
Theorem | brtrclfv2 38986* | Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑌 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})) | ||
Theorem | trclfvdecomr 38987 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) | ||
Theorem | trclfvdecoml 38988 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ (𝑅 ∘ (t+‘𝑅)))) | ||
Theorem | dmtrclfvRP 38989 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
Theorem | rntrclfvRP 38990 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | rntrclfv 38991 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | dfrtrcl3 38992* | Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14213. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
Theorem | brfvrtrcld 38993* | If two elements are connected by the reflexive-transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some natural number 𝑛. Similar of dfrtrclrec2 14208. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t*‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvrtrcllb0d 38994 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb0da 38995 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb1d 38996 | A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*‘𝑅)) | ||
Theorem | dfrtrcl4 38997 | Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) | ||
Theorem | corcltrcl 38998 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
⊢ (r* ∘ t+) = t* | ||
Theorem | cortrcltrcl 38999 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t+) = t* | ||
Theorem | corclrtrcl 39000 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ t*) = t* |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |