| Metamath
Proof Explorer Theorem List (p. 390 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sps-o 38901 | Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | hbequid 38902 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (The proof does not use ax-c10 38879.) (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | ||
| Theorem | nfequid-o 38903 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (The proof uses only ax-4 1809, ax-7 2008, ax-c9 38883, and ax-gen 1795. This shows that this can be proved without ax6 2382, even though Theorem equid 2012 cannot. A shorter proof using ax6 2382 is obtainable from equid 2012 and hbth 1803.) Remark added 2-Dec-2015 NM: This proof does implicitly use ax6v 1968, which is used for the derivation of axc9 2380, unless we consider ax-c9 38883 the starting axiom rather than ax-13 2370. (Contributed by NM, 13-Jan-2011.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
| Theorem | axc5c7 38904 | Proof of a single axiom that can replace ax-c5 38876 and ax-c7 38878. See axc5c7toc5 38905 and axc5c7toc7 38906 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) → 𝜑) | ||
| Theorem | axc5c7toc5 38905 | Rederivation of ax-c5 38876 from axc5c7 38904. Only propositional calculus is used for the rederivation. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c7toc7 38906 | Rederivation of ax-c7 38878 from axc5c7 38904. Only propositional calculus is used for the rederivation. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc711 38907 | Proof of a single axiom that can replace both ax-c7 38878 and ax-11 2158. See axc711toc7 38909 and axc711to11 38910 for the rederivation of those axioms. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑦∀𝑥𝜑 → ∀𝑦𝜑) | ||
| Theorem | nfa1-o 38908 | 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥∀𝑥𝜑 | ||
| Theorem | axc711toc7 38909 | Rederivation of ax-c7 38878 from axc711 38907. Note that ax-c7 38878 and ax-11 2158 are not used by the rederivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc711to11 38910 | Rederivation of ax-11 2158 from axc711 38907. Note that ax-c7 38878 and ax-11 2158 are not used by the rederivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | axc5c711 38911 | Proof of a single axiom that can replace ax-c5 38876, ax-c7 38878, and ax-11 2158 in a subsystem that includes these axioms plus ax-c4 38877 and ax-gen 1795 (and propositional calculus). See axc5c711toc5 38912, axc5c711toc7 38913, and axc5c711to11 38914 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 38904. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) | ||
| Theorem | axc5c711toc5 38912 | Rederivation of ax-c5 38876 from axc5c711 38911. Only propositional calculus is used by the rederivation. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c711toc7 38913 | Rederivation of ax-c7 38878 from axc5c711 38911. Note that ax-c7 38878 and ax-11 2158 are not used by the rederivation. The use of alimi 1811 (which uses ax-c5 38876) is allowed since we have already proved axc5c711toc5 38912. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | ||
| Theorem | axc5c711to11 38914 | Rederivation of ax-11 2158 from axc5c711 38911. Note that ax-c7 38878 and ax-11 2158 are not used by the rederivation. The use of alimi 1811 (which uses ax-c5 38876) is allowed since we have already proved axc5c711toc5 38912. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | equidqe 38915 | equid 2012 with existential quantifier without using ax-c5 38876 or ax-5 1910. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | ||
| Theorem | axc5sp1 38916 | A special case of ax-c5 38876 without using ax-c5 38876 or ax-5 1910. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | ||
| Theorem | equidq 38917 | equid 2012 with universal quantifier without using ax-c5 38876 or ax-5 1910. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∀𝑦 𝑥 = 𝑥 | ||
| Theorem | equid1ALT 38918 | Alternate proof of equid 2012 and equid1 38892 from older axioms ax-c7 38878, ax-c10 38879 and ax-c9 38883. (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑥 = 𝑥 | ||
| Theorem | axc11nfromc11 38919 |
Rederivation of ax-c11n 38881 from original version ax-c11 38880. See Theorem
axc11 2428 for the derivation of ax-c11 38880 from ax-c11n 38881.
This theorem should not be referenced in any proof. Instead, use ax-c11n 38881 above so that uses of ax-c11n 38881 can be more easily identified, or use aecom-o 38894 when this form is needed for studies involving ax-c11 38880 and omitting ax-5 1910. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | naecoms-o 38920 | A commutation rule for distinct variable specifiers. Version of naecoms 2427 using ax-c11 38880. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | hbnae-o 38921 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Version of hbnae 2430 using ax-c11 38880. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | dvelimf-o 38922 | Proof of dvelimh 2448 that uses ax-c11 38880 but not ax-c15 38882, ax-c11n 38881, or ax-12 2178. Version of dvelimh 2448 using ax-c11 38880 instead of axc11 2428. (Contributed by NM, 12-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
| Theorem | dral2-o 38923 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral2 2436 using ax-c11 38880. (Contributed by NM, 27-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
| Theorem | aev-o 38924* | A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent, proved without using ax-c16 38885. Version of aev 2058 using ax-c11 38880. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) | ||
| Theorem | ax5eq 38925* | Theorem to add distinct quantifier to atomic formula. (This theorem demonstrates the induction basis for ax-5 1910 considered as a metatheorem. Do not use it for later proofs - use ax-5 1910 instead, to avoid reference to the redundant axiom ax-c16 38885.) (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | ||
| Theorem | dveeq2-o 38926* | Quantifier introduction when one pair of variables is distinct. Version of dveeq2 2376 using ax-c15 38882. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
| Theorem | axc16g-o 38927* | A generalization of Axiom ax-c16 38885. Version of axc16g 2261 using ax-c11 38880. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
| Theorem | dveeq1-o 38928* | Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2378 using ax-c11 . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
| Theorem | dveeq1-o16 38929* | Version of dveeq1 2378 using ax-c16 38885 instead of ax-5 1910. (Contributed by NM, 29-Apr-2008.) TODO: Recover proof from older set.mm to remove use of ax-5 1910. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
| Theorem | ax5el 38930* | Theorem to add distinct quantifier to atomic formula. This theorem demonstrates the induction basis for ax-5 1910 considered as a metatheorem.) (Contributed by NM, 22-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦) | ||
| Theorem | axc11n-16 38931* | This theorem shows that, given ax-c16 38885, we can derive a version of ax-c11n 38881. However, it is weaker than ax-c11n 38881 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 27-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥) | ||
| Theorem | dveel2ALT 38932* | Alternate proof of dveel2 2460 using ax-c16 38885 instead of ax-5 1910. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) | ||
| Theorem | ax12f 38933 | Basis step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. We can start with any formula 𝜑 in which 𝑥 is not free. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
| Theorem | ax12eq 38934 | Basis step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 = 𝑤)))) | ||
| Theorem | ax12el 38935 | Basis step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Atomic formula for membership predicate. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) | ||
| Theorem | ax12indn 38936 | Induction step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Negation case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))) | ||
| Theorem | ax12indi 38937 | Induction step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Implication case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) & ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))))) | ||
| Theorem | ax12indalem 38938 | Lemma for ax12inda2 38940 and ax12inda 38941. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) | ||
| Theorem | ax12inda2ALT 38939* | Alternate proof of ax12inda2 38940, slightly more direct and not requiring ax-c16 38885. (Contributed by NM, 4-May-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) | ||
| Theorem | ax12inda2 38940* | Induction step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Quantification case. When 𝑧 and 𝑦 are distinct, this theorem avoids the dummy variables needed by the more general ax12inda 38941. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) | ||
| Theorem | ax12inda 38941* | Induction step for constructing a substitution instance of ax-c15 38882 without using ax-c15 38882. Quantification case. (When 𝑧 and 𝑦 are distinct, ax12inda2 38940 may be used instead to avoid the dummy variable 𝑤 in the proof.) (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (𝜑 → ∀𝑥(𝑥 = 𝑤 → 𝜑)))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) | ||
| Theorem | ax12v2-o 38942* | Rederivation of ax-c15 38882 from ax12v 2179 (without using ax-c15 38882 or the full ax-12 2178). Thus, the hypothesis (ax12v 2179) provides an alternate axiom that can be used in place of ax-c15 38882. See also axc15 2420. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
| Theorem | ax12a2-o 38943* | Derive ax-c15 38882 from a hypothesis in the form of ax-12 2178, without using ax-12 2178 or ax-c15 38882. The hypothesis is weaker than ax-12 2178, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus, the hypothesis provides an alternate axiom that can be used in place of ax-12 2178, if we also have ax-c11 38880, which this proof uses. As Theorem ax12 2421 shows, the distinct variable conditions are optional. An open problem is whether we can derive this with ax-c11n 38881 instead of ax-c11 38880. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
| Theorem | axc11-o 38944 |
Show that ax-c11 38880 can be derived from ax-c11n 38881 and ax-12 2178. An open
problem is whether this theorem can be derived from ax-c11n 38881 and the
others when ax-12 2178 is replaced with ax-c15 38882 or ax12v 2179. See Theorems
axc11nfromc11 38919 for the rederivation of ax-c11n 38881 from axc11 2428.
Normally, axc11 2428 should be used rather than ax-c11 38880 or axc11-o 38944, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | fsumshftd 38945* | Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 15746. The proof demonstrates how this can be derived starting from from fsumshft 15746. (Contributed by NM, 1-Nov-2019.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 = (𝑘 − 𝐾)) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) | ||
| Axiom | ax-riotaBAD 38946 | Define restricted description binder. In case it doesn't exist, we return a set which is not a member of the domain of discourse 𝐴. See also comments for df-iota 6464. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) WARNING: THIS "AXIOM", WHICH IS THE OLD df-riota 7344, CONFLICTS WITH (THE NEW) df-riota 7344 AND MAKES THE SYSTEM IN set.mm INCONSISTENT. IT IS TEMPORARY AND WILL BE DELETED AFTER ALL USES ARE ELIMINATED. |
| ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) | ||
| Theorem | riotaclbgBAD 38947* | Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) | ||
| Theorem | riotaclbBAD 38948* | Closure of restricted iota. (Contributed by NM, 15-Sep-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | ||
| Theorem | riotasvd 38949* | Deduction version of riotasv 38952. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶)) | ||
| Theorem | riotasv2d 38950* | Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5358). Special case of riota2f 7368. (Contributed by NM, 2-Mar-2013.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝐹) & ⊢ (𝜑 → Ⅎ𝑦𝜒) & ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) & ⊢ ((𝜑 ∧ 𝑦 = 𝐸) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑦 = 𝐸) → 𝐶 = 𝐹) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐷 = 𝐹) | ||
| Theorem | riotasv2s 38951* | The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5358) in the form of a substitution instance. Special case of riota2f 7368. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ (𝐸 ∈ 𝐵 ∧ [𝐸 / 𝑦]𝜑)) → 𝐷 = ⦋𝐸 / 𝑦⦌𝐶) | ||
| Theorem | riotasv 38952* | Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5358). Special case of riota2f 7368. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) | ||
| Theorem | riotasv3d 38953* | A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5358) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜃) & ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) & ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝜒 ↔ 𝜃)) & ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝜒)) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝜃) | ||
| Theorem | elimhyps 38954 | A version of elimhyp 4554 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| ⊢ [𝐵 / 𝑥]𝜑 ⇒ ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 | ||
| Theorem | dedths 38955 | A version of weak deduction theorem dedth 4547 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓 ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | renegclALT 38956 | Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11485. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
| Theorem | elimhyps2 38957 | Generalization of elimhyps 38954 that is not useful unless we can separately prove ⊢ 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.) |
| ⊢ [𝐵 / 𝑥]𝜑 ⇒ ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 | ||
| Theorem | dedths2 38958 | Generalization of dedths 38955 that is not useful unless we can separately prove ⊢ 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.) |
| ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) | ||
| Theorem | nfcxfrdf 38959 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐴) | ||
| Theorem | nfded 38960 | A deduction theorem that converts a not-free inference directly to deduction form. The first hypothesis is the hypothesis of the deduction form. The second is an equality deduction (e.g., (Ⅎ𝑥𝐴 → ∪ {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴} = ∪ 𝐴)) that starts from abidnf 3673. The last is assigned to the inference form (e.g., Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}) whose hypothesis is satisfied using nfaba1 2899. (Contributed by NM, 19-Nov-2020.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (Ⅎ𝑥𝐴 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐶) | ||
| Theorem | nfded2 38961 | A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 = 〈𝐴, 𝐵〉) for nfopd 4854) that starts from abidnf 3673. The last is assigned to the inference form (e.g., Ⅎ𝑥〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 for nfop 4853) whose hypotheses are satisfied using nfaba1 2899. (Contributed by NM, 19-Nov-2020.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 𝐶 = 𝐷) & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (𝜑 → Ⅎ𝑥𝐷) | ||
| Theorem | nfunidALT2 38962 | Deduction version of nfuni 4878. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) | ||
| Theorem | nfunidALT 38963 | Deduction version of nfuni 4878. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) | ||
| Theorem | nfopdALT 38964 | Deduction version of bound-variable hypothesis builder nfop 4853. This shows how the deduction version of a not-free theorem such as nfop 4853 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) | ||
| Theorem | cnaddcom 38965 | Recover the commutative law of addition for complex numbers from the Abelian group structure. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | toycom 38966* | Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commutative operations on ℂ. This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.) |
| ⊢ 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} & ⊢ + = (+g‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Syntax | clsa 38967 | Extend class notation with all 1-dim subspaces (atoms) of a left module or left vector space. |
| class LSAtoms | ||
| Syntax | clsh 38968 | Extend class notation with all subspaces of a left module or left vector space that are hyperplanes. |
| class LSHyp | ||
| Definition | df-lsatoms 38969* | Define the set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) |
| ⊢ LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g‘𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣}))) | ||
| Definition | df-lshyp 38970* | Define the set of all hyperplanes of a left module or left vector space. Also called co-atoms, these are subspaces that are one dimension less than the full space. (Contributed by NM, 29-Jun-2014.) |
| ⊢ LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) | ||
| Theorem | lshpset 38971* | The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) | ||
| Theorem | islshp 38972* | The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) | ||
| Theorem | islshpsm 38973* | Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) | ||
| Theorem | lshplss 38974 | A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
| Theorem | lshpne 38975 | A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → 𝑈 ≠ 𝑉) | ||
| Theorem | lshpnel 38976 | A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | ||
| Theorem | lshpnelb 38977 | The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) | ||
| Theorem | lshpnel2N 38978 | Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) | ||
| Theorem | lshpne0 38979 | The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) | ||
| Theorem | lshpdisj 38980 | A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 }) | ||
| Theorem | lshpcmp 38981 | If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐻) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lshpinN 38982 | The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐻) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatset 38983* | The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣}))) | ||
| Theorem | islsat 38984* | The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) | ||
| Theorem | lsatlspsn2 38985 | The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 38986 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) | ||
| Theorem | lsatlspsn 38986 | The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) | ||
| Theorem | islsati 38987* | A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) | ||
| Theorem | lsateln0 38988* | A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) | ||
| Theorem | lsatlss 38989 | The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) | ||
| Theorem | lsatlssel 38990 | An atom is a subspace. (Contributed by NM, 25-Aug-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
| Theorem | lsatssv 38991 | An atom is a set of vectors. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑄 ⊆ 𝑉) | ||
| Theorem | lsatn0 38992 | A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32274 analog.) (Contributed by NM, 25-Aug-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑈 ≠ { 0 }) | ||
| Theorem | lsatspn0 38993 | The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) | ||
| Theorem | lsator0sp 38994 | The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ∨ (𝑁‘{𝑋}) = { 0 })) | ||
| Theorem | lsatssn0 38995 | A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ≠ { 0 }) | ||
| Theorem | lsatcmp 38996 | If two atoms are comparable, they are equal. (atsseq 32276 analog.) TODO: can lspsncmp 21026 shorten this? (Contributed by NM, 25-Aug-2014.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatcmp2 38997 | If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 38996. TODO: can lspsncmp 21026 shorten this? (Contributed by NM, 3-Feb-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐴) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∨ 𝑈 = { 0 })) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatel 38998 | A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → 𝑈 = (𝑁‘{𝑋})) | ||
| Theorem | lsatelbN 38999 | A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑈 = (𝑁‘{𝑋}))) | ||
| Theorem | lsat2el 39000 | Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝑃 = 𝑄) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |