| Step | Hyp | Ref
| Expression |
| 1 | | reprval.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 2 | | reprval.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | reprval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 4 | | 1nn0 12542 |
. . . . 5
⊢ 1 ∈
ℕ0 |
| 5 | 4 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℕ0) |
| 6 | 3, 5 | nn0addcld 12591 |
. . 3
⊢ (𝜑 → (𝑆 + 1) ∈
ℕ0) |
| 7 | 1, 2, 6 | reprval 34625 |
. 2
⊢ (𝜑 → (𝐴(repr‘(𝑆 + 1))𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀}) |
| 8 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) |
| 9 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 11 | 3 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑆 ∈
ℕ0) |
| 12 | | fzonn0p1 13781 |
. . . . . . . . . 10
⊢ (𝑆 ∈ ℕ0
→ 𝑆 ∈ (0..^(𝑆 + 1))) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑆 ∈ (0..^(𝑆 + 1))) |
| 14 | 10, 13 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒‘𝑆) ∈ 𝐴) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑏 = (𝑒‘𝑆)) → 𝑏 = (𝑒‘𝑆)) |
| 16 | 15 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑏 = (𝑒‘𝑆)) → (𝑀 − 𝑏) = (𝑀 − (𝑒‘𝑆))) |
| 17 | 16 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑏 = (𝑒‘𝑆)) → (𝐴(repr‘𝑆)(𝑀 − 𝑏)) = (𝐴(repr‘𝑆)(𝑀 − (𝑒‘𝑆)))) |
| 18 | | opeq2 4874 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑒‘𝑆) → 〈𝑆, 𝑏〉 = 〈𝑆, (𝑒‘𝑆)〉) |
| 19 | 18 | sneqd 4638 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑒‘𝑆) → {〈𝑆, 𝑏〉} = {〈𝑆, (𝑒‘𝑆)〉}) |
| 20 | 19 | uneq2d 4168 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑒‘𝑆) → (𝑐 ∪ {〈𝑆, 𝑏〉}) = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 21 | 20 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑒‘𝑆) → (𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉}) ↔ 𝑒 = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉}))) |
| 22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑏 = (𝑒‘𝑆)) → (𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉}) ↔ 𝑒 = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉}))) |
| 23 | 17, 22 | rexeqbidv 3347 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑏 = (𝑒‘𝑆)) → (∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉}) ↔ ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − (𝑒‘𝑆)))𝑒 = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉}))) |
| 24 | 9 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 25 | 3 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → 𝑆 ∈
ℕ0) |
| 26 | | fzossfzop1 13782 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ ℕ0
→ (0..^𝑆) ⊆
(0..^(𝑆 +
1))) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (0..^𝑆) ⊆ (0..^(𝑆 + 1))) |
| 28 | 24, 27 | fssresd 6775 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (𝑒 ↾ (0..^𝑆)):(0..^𝑆)⟶𝐴) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒 ↾ (0..^𝑆)):(0..^𝑆)⟶𝐴) |
| 30 | | nnex 12272 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ ∈
V) |
| 32 | 31, 1 | ssexd 5324 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ V) |
| 33 | | fzofi 14015 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑆) ∈
Fin |
| 34 | 33 | elexi 3503 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑆) ∈
V |
| 35 | | elmapg 8879 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → ((𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑒 ↾ (0..^𝑆)):(0..^𝑆)⟶𝐴)) |
| 36 | 32, 34, 35 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑒 ↾ (0..^𝑆)):(0..^𝑆)⟶𝐴)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑒 ↾ (0..^𝑆)):(0..^𝑆)⟶𝐴)) |
| 38 | 29, 37 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆))) |
| 39 | 33 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (0..^𝑆) ∈ Fin) |
| 40 | | nnsscn 12271 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ
⊆ ℂ |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℕ ⊆
ℂ) |
| 42 | 1, 41 | sstrd 3994 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℂ) |
| 44 | 28 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑒 ↾ (0..^𝑆))‘𝑎) ∈ 𝐴) |
| 45 | 43, 44 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑒 ↾ (0..^𝑆))‘𝑎) ∈ ℂ) |
| 46 | 39, 45 | fsumcl 15769 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) ∈ ℂ) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) ∈ ℂ) |
| 48 | 42 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → 𝐴 ⊆ ℂ) |
| 49 | 25, 12 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → 𝑆 ∈ (0..^(𝑆 + 1))) |
| 50 | 24, 49 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (𝑒‘𝑆) ∈ 𝐴) |
| 51 | 48, 50 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (𝑒‘𝑆) ∈ ℂ) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒‘𝑆) ∈ ℂ) |
| 53 | 47, 52 | pncand 11621 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆)) − (𝑒‘𝑆)) = Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎)) |
| 54 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎(𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) |
| 55 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎(𝑒‘𝑆) |
| 56 | | fzonel 13713 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝑆 ∈ (0..^𝑆) |
| 57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → ¬ 𝑆 ∈ (0..^𝑆)) |
| 58 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 59 | 27 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^(𝑆 + 1))) |
| 60 | 58, 59 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) ∈ 𝐴) |
| 61 | 43, 60 | sseldd 3984 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) ∈ ℂ) |
| 62 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑆 → (𝑒‘𝑎) = (𝑒‘𝑆)) |
| 63 | 54, 55, 39, 25, 57, 61, 62, 51 | fsumsplitsn 15780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → Σ𝑎 ∈ ((0..^𝑆) ∪ {𝑆})(𝑒‘𝑎) = (Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) + (𝑒‘𝑆))) |
| 64 | | fzosplitsn 13814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∈
(ℤ≥‘0) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆})) |
| 65 | | nn0uz 12920 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 = (ℤ≥‘0) |
| 66 | 64, 65 | eleq2s 2859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∈ ℕ0
→ (0..^(𝑆 + 1)) =
((0..^𝑆) ∪ {𝑆})) |
| 67 | 25, 66 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆})) |
| 68 | 67 | sumeq1d 15736 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = Σ𝑎 ∈ ((0..^𝑆) ∪ {𝑆})(𝑒‘𝑎)) |
| 69 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
| 70 | 69 | fvresd 6926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑒 ↾ (0..^𝑆))‘𝑎) = (𝑒‘𝑎)) |
| 71 | 70 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎)) |
| 72 | 71 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → (Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆)) = (Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) + (𝑒‘𝑆))) |
| 73 | 63, 68, 72 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = (Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆))) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = (Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆))) |
| 75 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) |
| 76 | 74, 75 | eqtr3d 2779 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆)) = 𝑀) |
| 77 | 76 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) + (𝑒‘𝑆)) − (𝑒‘𝑆)) = (𝑀 − (𝑒‘𝑆))) |
| 78 | 53, 77 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) = (𝑀 − (𝑒‘𝑆))) |
| 79 | 38, 78 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) = (𝑀 − (𝑒‘𝑆)))) |
| 80 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (𝑒 ↾ (0..^𝑆)) → (𝑑‘𝑎) = ((𝑒 ↾ (0..^𝑆))‘𝑎)) |
| 81 | 80 | sumeq2sdv 15739 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (𝑒 ↾ (0..^𝑆)) → Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎)) |
| 82 | 81 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑒 ↾ (0..^𝑆)) → (Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = (𝑀 − (𝑒‘𝑆)) ↔ Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) = (𝑀 − (𝑒‘𝑆)))) |
| 83 | 82 | elrab 3692 |
. . . . . . . . . . 11
⊢ ((𝑒 ↾ (0..^𝑆)) ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = (𝑀 − (𝑒‘𝑆))} ↔ ((𝑒 ↾ (0..^𝑆)) ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)((𝑒 ↾ (0..^𝑆))‘𝑎) = (𝑀 − (𝑒‘𝑆)))) |
| 84 | 79, 83 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒 ↾ (0..^𝑆)) ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = (𝑀 − (𝑒‘𝑆))}) |
| 85 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝐴 ⊆ ℕ) |
| 86 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑀 ∈ ℤ) |
| 87 | | nnssz 12635 |
. . . . . . . . . . . . . . 15
⊢ ℕ
⊆ ℤ |
| 88 | 1, 87 | sstrdi 3996 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 89 | 88 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝐴 ⊆ ℤ) |
| 90 | 89, 14 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒‘𝑆) ∈ ℤ) |
| 91 | 86, 90 | zsubcld 12727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑀 − (𝑒‘𝑆)) ∈ ℤ) |
| 92 | 85, 91, 11 | reprval 34625 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝐴(repr‘𝑆)(𝑀 − (𝑒‘𝑆))) = {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = (𝑀 − (𝑒‘𝑆))}) |
| 93 | 84, 92 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒 ↾ (0..^𝑆)) ∈ (𝐴(repr‘𝑆)(𝑀 − (𝑒‘𝑆)))) |
| 94 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑐 = (𝑒 ↾ (0..^𝑆))) → 𝑐 = (𝑒 ↾ (0..^𝑆))) |
| 95 | 94 | uneq1d 4167 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑐 = (𝑒 ↾ (0..^𝑆))) → (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉}) = ((𝑒 ↾ (0..^𝑆)) ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 96 | 95 | eqeq2d 2748 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ∧ 𝑐 = (𝑒 ↾ (0..^𝑆))) → (𝑒 = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉}) ↔ 𝑒 = ((𝑒 ↾ (0..^𝑆)) ∪ {〈𝑆, (𝑒‘𝑆)〉}))) |
| 97 | 10 | ffnd 6737 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑒 Fn (0..^(𝑆 + 1))) |
| 98 | | fnsnsplit 7204 |
. . . . . . . . . . 11
⊢ ((𝑒 Fn (0..^(𝑆 + 1)) ∧ 𝑆 ∈ (0..^(𝑆 + 1))) → 𝑒 = ((𝑒 ↾ ((0..^(𝑆 + 1)) ∖ {𝑆})) ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 99 | 97, 13, 98 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑒 = ((𝑒 ↾ ((0..^(𝑆 + 1)) ∖ {𝑆})) ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 100 | 11, 65 | eleqtrdi 2851 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑆 ∈
(ℤ≥‘0)) |
| 101 | | fzodif2 32793 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(ℤ≥‘0) → ((0..^(𝑆 + 1)) ∖ {𝑆}) = (0..^𝑆)) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((0..^(𝑆 + 1)) ∖ {𝑆}) = (0..^𝑆)) |
| 103 | 102 | reseq2d 5997 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → (𝑒 ↾ ((0..^(𝑆 + 1)) ∖ {𝑆})) = (𝑒 ↾ (0..^𝑆))) |
| 104 | 103 | uneq1d 4167 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ((𝑒 ↾ ((0..^(𝑆 + 1)) ∖ {𝑆})) ∪ {〈𝑆, (𝑒‘𝑆)〉}) = ((𝑒 ↾ (0..^𝑆)) ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 105 | 99, 104 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → 𝑒 = ((𝑒 ↾ (0..^𝑆)) ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 106 | 93, 96, 105 | rspcedvd 3624 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − (𝑒‘𝑆)))𝑒 = (𝑐 ∪ {〈𝑆, (𝑒‘𝑆)〉})) |
| 107 | 14, 23, 106 | rspcedvd 3624 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) → ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 108 | 107 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀)) → ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 109 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 110 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝐴 ⊆ ℕ) |
| 111 | 110 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝐴 ⊆ ℕ) |
| 112 | 2 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 113 | 88 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ ℤ) |
| 114 | 112, 113 | zsubcld 12727 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (𝑀 − 𝑏) ∈ ℤ) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → (𝑀 − 𝑏) ∈ ℤ) |
| 116 | 3 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑆 ∈
ℕ0) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝑆 ∈
ℕ0) |
| 118 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) |
| 119 | 111, 115,
117, 118 | reprf 34627 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝑐:(0..^𝑆)⟶𝐴) |
| 120 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝑏 ∈ 𝐴) |
| 121 | 117, 120 | fsnd 6891 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → {〈𝑆, 𝑏〉}:{𝑆}⟶𝐴) |
| 122 | | fzodisjsn 13737 |
. . . . . . . . . . . . . 14
⊢
((0..^𝑆) ∩
{𝑆}) =
∅ |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → ((0..^𝑆) ∩ {𝑆}) = ∅) |
| 124 | 119, 121,
123 | fun2d 6772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → (𝑐 ∪ {〈𝑆, 𝑏〉}):((0..^𝑆) ∪ {𝑆})⟶𝐴) |
| 125 | 117, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆})) |
| 126 | 125 | feq2d 6722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → ((𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴 ↔ (𝑐 ∪ {〈𝑆, 𝑏〉}):((0..^𝑆) ∪ {𝑆})⟶𝐴)) |
| 127 | 124, 126 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴) |
| 128 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢
(0..^(𝑆 + 1)) ∈
V |
| 129 | | elmapg 8879 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ V ∧ (0..^(𝑆 + 1)) ∈ V) → ((𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ↔ (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴)) |
| 130 | 32, 128, 129 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ↔ (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴)) |
| 131 | 130 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → ((𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ↔ (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴)) |
| 132 | 127, 131 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → (𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) |
| 133 | 132 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) |
| 134 | 109, 133 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1)))) |
| 135 | 125 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆})) |
| 136 | 135 | sumeq1d 15736 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = Σ𝑎 ∈ ((0..^𝑆) ∪ {𝑆})(𝑒‘𝑎)) |
| 137 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 138 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (0..^𝑆) ∈ Fin) |
| 139 | 117 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑆 ∈
ℕ0) |
| 140 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ¬ 𝑆 ∈ (0..^𝑆)) |
| 141 | 42 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℂ) |
| 142 | 127 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴) |
| 143 | 109 | feq1d 6720 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒:(0..^(𝑆 + 1))⟶𝐴 ↔ (𝑐 ∪ {〈𝑆, 𝑏〉}):(0..^(𝑆 + 1))⟶𝐴)) |
| 144 | 142, 143 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 145 | 144 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑒:(0..^(𝑆 + 1))⟶𝐴) |
| 146 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
| 147 | | elun1 4182 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (0..^𝑆) → 𝑎 ∈ ((0..^𝑆) ∪ {𝑆})) |
| 148 | 146, 147 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ ((0..^𝑆) ∪ {𝑆})) |
| 149 | 125 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆})) |
| 150 | 148, 149 | eleqtrrd 2844 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^(𝑆 + 1))) |
| 151 | 145, 150 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) ∈ 𝐴) |
| 152 | 141, 151 | sseldd 3984 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) ∈ ℂ) |
| 153 | 42 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝐴 ⊆ ℂ) |
| 154 | 139, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑆 ∈ (0..^(𝑆 + 1))) |
| 155 | 144, 154 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒‘𝑆) ∈ 𝐴) |
| 156 | 153, 155 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒‘𝑆) ∈ ℂ) |
| 157 | 137, 55, 138, 139, 140, 152, 62, 156 | fsumsplitsn 15780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ ((0..^𝑆) ∪ {𝑆})(𝑒‘𝑎) = (Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) + (𝑒‘𝑆))) |
| 158 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 159 | 158 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) = ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑎)) |
| 160 | 119 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → 𝑐 Fn (0..^𝑆)) |
| 161 | 160 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐 Fn (0..^𝑆)) |
| 162 | 121 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) → {〈𝑆, 𝑏〉} Fn {𝑆}) |
| 163 | 162 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → {〈𝑆, 𝑏〉} Fn {𝑆}) |
| 164 | 122 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → ((0..^𝑆) ∩ {𝑆}) = ∅) |
| 165 | | fvun1 7000 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 Fn (0..^𝑆) ∧ {〈𝑆, 𝑏〉} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑎 ∈ (0..^𝑆))) → ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑎) = (𝑐‘𝑎)) |
| 166 | 161, 163,
164, 146, 165 | syl112anc 1376 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑎) = (𝑐‘𝑎)) |
| 167 | 159, 166 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒‘𝑎) = (𝑐‘𝑎)) |
| 168 | 167 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ∀𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) = (𝑐‘𝑎)) |
| 169 | 168 | sumeq2d 15737 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
| 170 | 111 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝐴 ⊆ ℕ) |
| 171 | 115 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑀 − 𝑏) ∈ ℤ) |
| 172 | 118 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) |
| 173 | 170, 171,
139, 172 | reprsum 34628 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = (𝑀 − 𝑏)) |
| 174 | 169, 173 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) = (𝑀 − 𝑏)) |
| 175 | 109 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒‘𝑆) = ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑆)) |
| 176 | 160 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑐 Fn (0..^𝑆)) |
| 177 | 162 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → {〈𝑆, 𝑏〉} Fn {𝑆}) |
| 178 | 122 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ((0..^𝑆) ∩ {𝑆}) = ∅) |
| 179 | | snidg 4660 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ ℕ0
→ 𝑆 ∈ {𝑆}) |
| 180 | 139, 179 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑆 ∈ {𝑆}) |
| 181 | | fvun2 7001 |
. . . . . . . . . . . . 13
⊢ ((𝑐 Fn (0..^𝑆) ∧ {〈𝑆, 𝑏〉} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑆 ∈ {𝑆})) → ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑆) = ({〈𝑆, 𝑏〉}‘𝑆)) |
| 182 | 176, 177,
178, 180, 181 | syl112anc 1376 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ((𝑐 ∪ {〈𝑆, 𝑏〉})‘𝑆) = ({〈𝑆, 𝑏〉}‘𝑆)) |
| 183 | 120 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑏 ∈ 𝐴) |
| 184 | | fvsng 7200 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ ℕ0
∧ 𝑏 ∈ 𝐴) → ({〈𝑆, 𝑏〉}‘𝑆) = 𝑏) |
| 185 | 139, 183,
184 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ({〈𝑆, 𝑏〉}‘𝑆) = 𝑏) |
| 186 | 175, 182,
185 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒‘𝑆) = 𝑏) |
| 187 | 174, 186 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) + (𝑒‘𝑆)) = ((𝑀 − 𝑏) + 𝑏)) |
| 188 | | zsscn 12621 |
. . . . . . . . . . . 12
⊢ ℤ
⊆ ℂ |
| 189 | 112 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑀 ∈ ℤ) |
| 190 | 188, 189 | sselid 3981 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑀 ∈ ℂ) |
| 191 | 186, 156 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → 𝑏 ∈ ℂ) |
| 192 | 190, 191 | npcand 11624 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → ((𝑀 − 𝑏) + 𝑏) = 𝑀) |
| 193 | 187, 192 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (Σ𝑎 ∈ (0..^𝑆)(𝑒‘𝑎) + (𝑒‘𝑆)) = 𝑀) |
| 194 | 136, 157,
193 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) |
| 195 | 134, 194 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))) ∧ 𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀)) |
| 196 | 195 | r19.29ffa 32490 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) → (𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀)) |
| 197 | 108, 196 | impbida 801 |
. . . . 5
⊢ (𝜑 → ((𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ↔ ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉}))) |
| 198 | | reprsuc.f |
. . . . . . 7
⊢ 𝐹 = (𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏)) ↦ (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 199 | | vex 3484 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
| 200 | | snex 5436 |
. . . . . . . 8
⊢
{〈𝑆, 𝑏〉} ∈
V |
| 201 | 199, 200 | unex 7764 |
. . . . . . 7
⊢ (𝑐 ∪ {〈𝑆, 𝑏〉}) ∈ V |
| 202 | 198, 201 | elrnmpti 5973 |
. . . . . 6
⊢ (𝑒 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 203 | 202 | rexbii 3094 |
. . . . 5
⊢
(∃𝑏 ∈
𝐴 𝑒 ∈ ran 𝐹 ↔ ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏))𝑒 = (𝑐 ∪ {〈𝑆, 𝑏〉})) |
| 204 | 197, 203 | bitr4di 289 |
. . . 4
⊢ (𝜑 → ((𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀) ↔ ∃𝑏 ∈ 𝐴 𝑒 ∈ ran 𝐹)) |
| 205 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑐 = 𝑒 → (𝑐‘𝑎) = (𝑒‘𝑎)) |
| 206 | 205 | sumeq2sdv 15739 |
. . . . . . 7
⊢ (𝑐 = 𝑒 → Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎)) |
| 207 | 206 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑐 = 𝑒 → (Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀)) |
| 208 | 207 | cbvrabv 3447 |
. . . . 5
⊢ {𝑐 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀} = {𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀} |
| 209 | 208 | reqabi 3460 |
. . . 4
⊢ (𝑒 ∈ {𝑐 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀} ↔ (𝑒 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∧ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑒‘𝑎) = 𝑀)) |
| 210 | | eliun 4995 |
. . . 4
⊢ (𝑒 ∈ ∪ 𝑏 ∈ 𝐴 ran 𝐹 ↔ ∃𝑏 ∈ 𝐴 𝑒 ∈ ran 𝐹) |
| 211 | 204, 209,
210 | 3bitr4g 314 |
. . 3
⊢ (𝜑 → (𝑒 ∈ {𝑐 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀} ↔ 𝑒 ∈ ∪
𝑏 ∈ 𝐴 ran 𝐹)) |
| 212 | 211 | eqrdv 2735 |
. 2
⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑m (0..^(𝑆 + 1))) ∣ Σ𝑎 ∈ (0..^(𝑆 + 1))(𝑐‘𝑎) = 𝑀} = ∪
𝑏 ∈ 𝐴 ran 𝐹) |
| 213 | 7, 212 | eqtrd 2777 |
1
⊢ (𝜑 → (𝐴(repr‘(𝑆 + 1))𝑀) = ∪
𝑏 ∈ 𝐴 ran 𝐹) |