![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reusv3i | Structured version Visualization version GIF version |
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
Ref | Expression |
---|---|
reusv3.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
reusv3.2 | ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
reusv3i | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reusv3.1 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
2 | reusv3.2 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) | |
3 | 2 | eqeq2d 2809 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
4 | 1, 3 | imbi12d 336 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝐶) ↔ (𝜓 → 𝑥 = 𝐷))) |
5 | 4 | cbvralv 3354 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) |
6 | 5 | biimpi 208 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) |
7 | raaanv 4274 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) ↔ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷))) | |
8 | prth 844 | . . . . . 6 ⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → (𝑥 = 𝐶 ∧ 𝑥 = 𝐷))) | |
9 | eqtr2 2819 | . . . . . 6 ⊢ ((𝑥 = 𝐶 ∧ 𝑥 = 𝐷) → 𝐶 = 𝐷) | |
10 | 8, 9 | syl6 35 | . . . . 5 ⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
11 | 10 | 2ralimi 3134 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
12 | 7, 11 | sylbir 227 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
13 | 6, 12 | mpdan 679 | . 2 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
14 | 13 | rexlimivw 3210 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∀wral 3089 ∃wrex 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-v 3387 df-dif 3772 df-nul 4116 |
This theorem is referenced by: reusv3 5075 |
Copyright terms: Public domain | W3C validator |