MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1mpt Structured version   Visualization version   GIF version

Theorem f1mpt 7022
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1 𝐹 = (𝑥𝐴𝐶)
f1mpt.2 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
f1mpt (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 5167 . . . 4 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2978 . . 3 𝑥𝐹
4 nfcv 2980 . . 3 𝑦𝐹
53, 4dff13f 7017 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
61fmpt 6877 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76anbi1i 625 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
8 f1mpt.2 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝐷)
98eleq1d 2900 . . . . . 6 (𝑥 = 𝑦 → (𝐶𝐵𝐷𝐵))
109cbvralvw 3452 . . . . 5 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝐷𝐵)
11 raaanv 4464 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵))
121fvmpt2 6782 . . . . . . . . . . . . . 14 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
138, 1fvmptg 6769 . . . . . . . . . . . . . 14 ((𝑦𝐴𝐷𝐵) → (𝐹𝑦) = 𝐷)
1412, 13eqeqan12d 2841 . . . . . . . . . . . . 13 (((𝑥𝐴𝐶𝐵) ∧ (𝑦𝐴𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1514an4s 658 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝐶 = 𝐷))
1615imbi1d 344 . . . . . . . . . . 11 (((𝑥𝐴𝑦𝐴) ∧ (𝐶𝐵𝐷𝐵)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)))
1716ex 415 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → ((𝐶𝐵𝐷𝐵) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
1817ralimdva 3180 . . . . . . . . 9 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))))
19 ralbi 3170 . . . . . . . . 9 (∀𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2018, 19syl6 35 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))))
2120ralimia 3161 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → ∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
22 ralbi 3170 . . . . . . 7 (∀𝑥𝐴 (∀𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2321, 22syl 17 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶𝐵𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2411, 23sylbir 237 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐴 𝐷𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2510, 24sylan2b 595 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴 𝐶𝐵) → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2625anidms 569 . . 3 (∀𝑥𝐴 𝐶𝐵 → (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
2726pm5.32i 577 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
285, 7, 273bitr2i 301 1 (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  cmpt 5149  wf 6354  1-1wf1 6355  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fv 6366
This theorem is referenced by:  ismon2  17007  isepi2  17014  uspgredg2v  27009  usgredg2v  27012  aciunf1lem  30410  fnpreimac  30419  disjf1  41449
  Copyright terms: Public domain W3C validator