Proof of Theorem f1mpt
Step | Hyp | Ref
| Expression |
1 | | f1mpt.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
2 | | nfmpt1 5131 |
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
3 | 1, 2 | nfcxfr 2918 |
. . 3
⊢
Ⅎ𝑥𝐹 |
4 | | nfcv 2920 |
. . 3
⊢
Ⅎ𝑦𝐹 |
5 | 3, 4 | dff13f 7007 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
6 | 1 | fmpt 6866 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
7 | 6 | anbi1i 627 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
8 | | f1mpt.2 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
9 | 8 | eleq1d 2837 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ 𝐷 ∈ 𝐵)) |
10 | 9 | cbvralvw 3362 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝐷 ∈ 𝐵) |
11 | | raaanv 4415 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐴 𝐷 ∈ 𝐵)) |
12 | 1 | fvmpt2 6771 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝑥) = 𝐶) |
13 | 8, 1 | fvmptg 6758 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐹‘𝑦) = 𝐷) |
14 | 12, 13 | eqeqan12d 2776 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝐶 = 𝐷)) |
15 | 14 | an4s 660 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝐶 = 𝐷)) |
16 | 15 | imbi1d 346 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
17 | 16 | ex 417 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)))) |
18 | 17 | ralimdva 3109 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → ∀𝑦 ∈ 𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)))) |
19 | | ralbi 3100 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
20 | 18, 19 | syl6 35 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)))) |
21 | 20 | ralimia 3091 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
22 | | ralbi 3100 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
24 | 11, 23 | sylbir 238 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐴 𝐷 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
25 | 10, 24 | sylan2b 597 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
26 | 25 | anidms 571 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
27 | 26 | pm5.32i 579 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |
28 | 5, 7, 27 | 3bitr2i 303 |
1
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦))) |