MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinun Structured version   Visualization version   GIF version

Theorem lfinun 23460
Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
lfinun ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))

Proof of Theorem lfinun
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfintop 23456 . . . . 5 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
21ad2antrr 726 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 ∈ Top)
3 ssequn2 4138 . . . . . . . 8 ( 𝐵 𝐽 ↔ ( 𝐽 𝐵) = 𝐽)
43biimpi 216 . . . . . . 7 ( 𝐵 𝐽 → ( 𝐽 𝐵) = 𝐽)
54adantl 481 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = 𝐽)
6 eqid 2733 . . . . . . . . 9 𝐽 = 𝐽
7 eqid 2733 . . . . . . . . 9 𝐴 = 𝐴
86, 7locfinbas 23457 . . . . . . . 8 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
98ad2antrr 726 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = 𝐴)
109uneq1d 4116 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = ( 𝐴 𝐵))
115, 10eqtr3d 2770 . . . . 5 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = ( 𝐴 𝐵))
12 uniun 4883 . . . . 5 (𝐴𝐵) = ( 𝐴 𝐵)
1311, 12eqtr4di 2786 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = (𝐴𝐵))
146locfinnei 23458 . . . . . . 7 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1514ad4ant14 752 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
16 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
17 rabfi 9166 . . . . . . . . . . . 12 (𝐵 ∈ Fin → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1817ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
19 rabun2 4273 . . . . . . . . . . . 12 {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} = ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅})
20 unfi 9091 . . . . . . . . . . . 12 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅}) ∈ Fin)
2119, 20eqeltrid 2837 . . . . . . . . . . 11 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2216, 18, 21syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2322ex 412 . . . . . . . . 9 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2423ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2524anim2d 612 . . . . . . 7 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2625reximdv 3148 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2715, 26mpd 15 . . . . 5 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2827ralrimiva 3125 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
292, 13, 283jca 1128 . . 3 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
30293impa 1109 . 2 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
31 eqid 2733 . . 3 (𝐴𝐵) = (𝐴𝐵)
326, 31islocfin 23452 . 2 ((𝐴𝐵) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
3330, 32sylibr 234 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cun 3896  cin 3897  wss 3898  c0 4282   cuni 4860  cfv 6489  Fincfn 8879  Topctop 22828  LocFinclocfin 23439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-en 8880  df-fin 8883  df-top 22829  df-locfin 23442
This theorem is referenced by:  locfinref  33926
  Copyright terms: Public domain W3C validator