MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinun Structured version   Visualization version   GIF version

Theorem lfinun 23533
Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
lfinun ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))

Proof of Theorem lfinun
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfintop 23529 . . . . 5 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
21ad2antrr 726 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 ∈ Top)
3 ssequn2 4189 . . . . . . . 8 ( 𝐵 𝐽 ↔ ( 𝐽 𝐵) = 𝐽)
43biimpi 216 . . . . . . 7 ( 𝐵 𝐽 → ( 𝐽 𝐵) = 𝐽)
54adantl 481 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = 𝐽)
6 eqid 2737 . . . . . . . . 9 𝐽 = 𝐽
7 eqid 2737 . . . . . . . . 9 𝐴 = 𝐴
86, 7locfinbas 23530 . . . . . . . 8 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
98ad2antrr 726 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = 𝐴)
109uneq1d 4167 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = ( 𝐴 𝐵))
115, 10eqtr3d 2779 . . . . 5 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = ( 𝐴 𝐵))
12 uniun 4930 . . . . 5 (𝐴𝐵) = ( 𝐴 𝐵)
1311, 12eqtr4di 2795 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = (𝐴𝐵))
146locfinnei 23531 . . . . . . 7 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1514ad4ant14 752 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
16 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
17 rabfi 9303 . . . . . . . . . . . 12 (𝐵 ∈ Fin → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1817ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
19 rabun2 4324 . . . . . . . . . . . 12 {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} = ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅})
20 unfi 9211 . . . . . . . . . . . 12 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅}) ∈ Fin)
2119, 20eqeltrid 2845 . . . . . . . . . . 11 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2216, 18, 21syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2322ex 412 . . . . . . . . 9 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2423ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2524anim2d 612 . . . . . . 7 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2625reximdv 3170 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2715, 26mpd 15 . . . . 5 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2827ralrimiva 3146 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
292, 13, 283jca 1129 . . 3 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
30293impa 1110 . 2 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
31 eqid 2737 . . 3 (𝐴𝐵) = (𝐴𝐵)
326, 31islocfin 23525 . 2 ((𝐴𝐵) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
3330, 32sylibr 234 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cun 3949  cin 3950  wss 3951  c0 4333   cuni 4907  cfv 6561  Fincfn 8985  Topctop 22899  LocFinclocfin 23512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-top 22900  df-locfin 23515
This theorem is referenced by:  locfinref  33840
  Copyright terms: Public domain W3C validator