MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinun Structured version   Visualization version   GIF version

Theorem lfinun 22133
Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
lfinun ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))

Proof of Theorem lfinun
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfintop 22129 . . . . 5 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
21ad2antrr 725 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 ∈ Top)
3 ssequn2 4145 . . . . . . . 8 ( 𝐵 𝐽 ↔ ( 𝐽 𝐵) = 𝐽)
43biimpi 219 . . . . . . 7 ( 𝐵 𝐽 → ( 𝐽 𝐵) = 𝐽)
54adantl 485 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = 𝐽)
6 eqid 2824 . . . . . . . . 9 𝐽 = 𝐽
7 eqid 2824 . . . . . . . . 9 𝐴 = 𝐴
86, 7locfinbas 22130 . . . . . . . 8 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
98ad2antrr 725 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = 𝐴)
109uneq1d 4124 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = ( 𝐴 𝐵))
115, 10eqtr3d 2861 . . . . 5 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = ( 𝐴 𝐵))
12 uniun 4847 . . . . 5 (𝐴𝐵) = ( 𝐴 𝐵)
1311, 12syl6eqr 2877 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = (𝐴𝐵))
146locfinnei 22131 . . . . . . 7 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1514ad4ant14 751 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
16 simpr 488 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
17 rabfi 8740 . . . . . . . . . . . 12 (𝐵 ∈ Fin → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1817ad2antlr 726 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
19 rabun2 4267 . . . . . . . . . . . 12 {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} = ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅})
20 unfi 8782 . . . . . . . . . . . 12 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅}) ∈ Fin)
2119, 20eqeltrid 2920 . . . . . . . . . . 11 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2216, 18, 21syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2322ex 416 . . . . . . . . 9 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2423ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2524anim2d 614 . . . . . . 7 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2625reximdv 3265 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2715, 26mpd 15 . . . . 5 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2827ralrimiva 3177 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
292, 13, 283jca 1125 . . 3 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
30293impa 1107 . 2 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
31 eqid 2824 . . 3 (𝐴𝐵) = (𝐴𝐵)
326, 31islocfin 22125 . 2 ((𝐴𝐵) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
3330, 32sylibr 237 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  cun 3917  cin 3918  wss 3919  c0 4276   cuni 4824  cfv 6343  Fincfn 8505  Topctop 21501  LocFinclocfin 22112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-oadd 8102  df-er 8285  df-en 8506  df-fin 8509  df-top 21502  df-locfin 22115
This theorem is referenced by:  locfinref  31165
  Copyright terms: Public domain W3C validator