Proof of Theorem reuun2
Step | Hyp | Ref
| Expression |
1 | | df-rex 3069 |
. . 3
⊢
(∃𝑥 ∈
𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
2 | | euor2 2615 |
. . 3
⊢ (¬
∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
3 | 1, 2 | sylnbi 329 |
. 2
⊢ (¬
∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | | df-reu 3070 |
. . 3
⊢
(∃!𝑥 ∈
(𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) |
5 | | elun 4079 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
6 | 5 | anbi1i 623 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
7 | | andir 1005 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | | orcom 866 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
9 | 7, 8 | bitri 274 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
10 | 6, 9 | bitri 274 |
. . . 4
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
11 | 10 | eubii 2585 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
12 | 4, 11 | bitri 274 |
. 2
⊢
(∃!𝑥 ∈
(𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
13 | | df-reu 3070 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
14 | 3, 12, 13 | 3bitr4g 313 |
1
⊢ (¬
∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) |