MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun2 Structured version   Visualization version   GIF version

Theorem reuun2 4245
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 3069 . . 3 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
2 euor2 2615 . . 3 (¬ ∃𝑥(𝑥𝐵𝜑) → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
31, 2sylnbi 329 . 2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
4 df-reu 3070 . . 3 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
5 elun 4079 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 623 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 1005 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 orcom 866 . . . . . 6 (((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
97, 8bitri 274 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
106, 9bitri 274 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
1110eubii 2585 . . 3 (∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
124, 11bitri 274 . 2 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
13 df-reu 3070 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
143, 12, 133bitr4g 313 1 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wex 1783  wcel 2108  ∃!weu 2568  wrex 3064  ∃!wreu 3065  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-reu 3070  df-v 3424  df-un 3888
This theorem is referenced by:  hdmap14lem4a  39812
  Copyright terms: Public domain W3C validator