MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun2 Structured version   Visualization version   GIF version

Theorem reuun2 4274
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Wolf Lammen, 15-May-2025.)
Assertion
Ref Expression
reuun2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 3058 . . 3 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
2 euor2 2610 . . 3 (¬ ∃𝑥(𝑥𝐵𝜑) → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
31, 2sylnbi 330 . 2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
4 df-reu 3348 . . 3 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
5 elun 4102 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 1010 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 orcom 870 . . . . 5 (((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
96, 7, 83bitri 297 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
109eubii 2582 . . 3 (∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
114, 10bitri 275 . 2 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
12 df-reu 3348 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
133, 11, 123bitr4g 314 1 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wex 1780  wcel 2113  ∃!weu 2565  wrex 3057  ∃!wreu 3345  cun 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-reu 3348  df-v 3439  df-un 3903
This theorem is referenced by:  hdmap14lem4a  41993
  Copyright terms: Public domain W3C validator