MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun2 Structured version   Visualization version   GIF version

Theorem reuun2 4325
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Wolf Lammen, 15-May-2025.)
Assertion
Ref Expression
reuun2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 3071 . . 3 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
2 euor2 2613 . . 3 (¬ ∃𝑥(𝑥𝐵𝜑) → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
31, 2sylnbi 330 . 2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
4 df-reu 3381 . . 3 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
5 elun 4153 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 1011 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 orcom 871 . . . . 5 (((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
96, 7, 83bitri 297 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
109eubii 2585 . . 3 (∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
114, 10bitri 275 . 2 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
12 df-reu 3381 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
133, 11, 123bitr4g 314 1 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  wex 1779  wcel 2108  ∃!weu 2568  wrex 3070  ∃!wreu 3378  cun 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-reu 3381  df-v 3482  df-un 3956
This theorem is referenced by:  hdmap14lem4a  41873
  Copyright terms: Public domain W3C validator