MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabf Structured version   Visualization version   GIF version

Theorem elrabf 3655
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1 𝑥𝐴
elrabf.2 𝑥𝐵
elrabf.3 𝑥𝜓
elrabf.4 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrabf (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))

Proof of Theorem elrabf
StepHypRef Expression
1 elex 3468 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → 𝐴 ∈ V)
2 elex 3468 . . 3 (𝐴𝐵𝐴 ∈ V)
32adantr 480 . 2 ((𝐴𝐵𝜓) → 𝐴 ∈ V)
4 df-rab 3406 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
54eleq2i 2820 . . 3 (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)})
6 elrabf.1 . . . 4 𝑥𝐴
7 elrabf.2 . . . . . 6 𝑥𝐵
86, 7nfel 2906 . . . . 5 𝑥 𝐴𝐵
9 elrabf.3 . . . . 5 𝑥𝜓
108, 9nfan 1899 . . . 4 𝑥(𝐴𝐵𝜓)
11 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
12 elrabf.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
1311, 12anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
146, 10, 13elabgf 3641 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
155, 14bitrid 283 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓)))
161, 3, 15pm5.21nii 378 1 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  {crab 3405  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449
This theorem is referenced by:  rabtru  3656  invdisjrab  5094  rabxfrd  5372  f1ossf1o  7100  onminsb  7770  nnawordex  8601  tskwe  9903  rabssnn0fi  13951  iundisj  25449  sltval2  27568  iundisjf  32518  iundisjfi  32719  bnj1388  35023  phpreu  37598  poimirlem26  37640  sticksstones1  42134  rfcnpre3  45027  rfcnpre4  45028  uzwo4  45047  disjinfi  45186  allbutfiinf  45416  fsumiunss  45573  fnlimfvre  45672  stoweidlem26  46024  stoweidlem27  46025  stoweidlem31  46029  stoweidlem34  46032  stoweidlem51  46049  stoweidlem52  46050  stoweidlem59  46057  fourierdlem20  46125  fourierdlem79  46183  pimdecfgtioc  46713  smfpimcclem  46805  prmdvdsfmtnof1lem1  47585
  Copyright terms: Public domain W3C validator