Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrabf | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
Ref | Expression |
---|---|
elrabf.1 | ⊢ Ⅎ𝑥𝐴 |
elrabf.2 | ⊢ Ⅎ𝑥𝐵 |
elrabf.3 | ⊢ Ⅎ𝑥𝜓 |
elrabf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrabf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → 𝐴 ∈ V) | |
2 | elex 3450 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) |
4 | df-rab 3073 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
5 | 4 | eleq2i 2830 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
6 | elrabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
7 | elrabf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfel 2921 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
9 | elrabf.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
10 | 8, 9 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
11 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
12 | elrabf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
13 | 11, 12 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
14 | 6, 10, 13 | elabgf 3605 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
15 | 5, 14 | bitrid 282 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
16 | 1, 3, 15 | pm5.21nii 380 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 {crab 3068 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 |
This theorem is referenced by: rabtru 3621 invdisjrabw 5059 invdisjrab 5060 rabxfrd 5340 f1ossf1o 7000 onminsb 7644 nnawordex 8468 tskwe 9708 rabssnn0fi 13706 iundisj 24712 iundisjf 30928 iundisjfi 31117 bnj1388 33013 sltval2 33859 phpreu 35761 poimirlem26 35803 sticksstones1 40102 rfcnpre3 42576 rfcnpre4 42577 uzwo4 42601 disjinfi 42731 allbutfiinf 42960 fsumiunss 43116 fnlimfvre 43215 stoweidlem26 43567 stoweidlem27 43568 stoweidlem31 43572 stoweidlem34 43575 stoweidlem51 43592 stoweidlem52 43593 stoweidlem59 43600 fourierdlem20 43668 fourierdlem79 43726 pimdecfgtioc 44252 smfpimcclem 44340 prmdvdsfmtnof1lem1 45036 |
Copyright terms: Public domain | W3C validator |