| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrabf | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 | ⊢ Ⅎ𝑥𝐴 |
| elrabf.2 | ⊢ Ⅎ𝑥𝐵 |
| elrabf.3 | ⊢ Ⅎ𝑥𝜓 |
| elrabf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrabf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | elex 3468 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) |
| 4 | df-rab 3406 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 5 | 4 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 6 | elrabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 7 | elrabf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2906 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 9 | elrabf.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 10 | 8, 9 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
| 11 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 12 | elrabf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 14 | 6, 10, 13 | elabgf 3641 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 15 | 5, 14 | bitrid 283 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 16 | 1, 3, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 {crab 3405 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 |
| This theorem is referenced by: rabtru 3656 invdisjrab 5094 rabxfrd 5372 f1ossf1o 7100 onminsb 7770 nnawordex 8601 tskwe 9903 rabssnn0fi 13951 iundisj 25449 sltval2 27568 iundisjf 32518 iundisjfi 32719 bnj1388 35023 phpreu 37598 poimirlem26 37640 sticksstones1 42134 rfcnpre3 45027 rfcnpre4 45028 uzwo4 45047 disjinfi 45186 allbutfiinf 45416 fsumiunss 45573 fnlimfvre 45672 stoweidlem26 46024 stoweidlem27 46025 stoweidlem31 46029 stoweidlem34 46032 stoweidlem51 46049 stoweidlem52 46050 stoweidlem59 46057 fourierdlem20 46125 fourierdlem79 46183 pimdecfgtioc 46713 smfpimcclem 46805 prmdvdsfmtnof1lem1 47585 |
| Copyright terms: Public domain | W3C validator |