| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrabf | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 | ⊢ Ⅎ𝑥𝐴 |
| elrabf.2 | ⊢ Ⅎ𝑥𝐵 |
| elrabf.3 | ⊢ Ⅎ𝑥𝜓 |
| elrabf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrabf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | elex 3471 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) |
| 4 | df-rab 3409 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 5 | 4 | eleq2i 2821 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 6 | elrabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 7 | elrabf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2907 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 9 | elrabf.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 10 | 8, 9 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
| 11 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 12 | elrabf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 14 | 6, 10, 13 | elabgf 3644 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 15 | 5, 14 | bitrid 283 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 16 | 1, 3, 15 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 {crab 3408 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 |
| This theorem is referenced by: rabtru 3659 invdisjrab 5097 rabxfrd 5375 f1ossf1o 7103 onminsb 7773 nnawordex 8604 tskwe 9910 rabssnn0fi 13958 iundisj 25456 sltval2 27575 iundisjf 32525 iundisjfi 32726 bnj1388 35030 phpreu 37605 poimirlem26 37647 sticksstones1 42141 rfcnpre3 45034 rfcnpre4 45035 uzwo4 45054 disjinfi 45193 allbutfiinf 45423 fsumiunss 45580 fnlimfvre 45679 stoweidlem26 46031 stoweidlem27 46032 stoweidlem31 46036 stoweidlem34 46039 stoweidlem51 46056 stoweidlem52 46057 stoweidlem59 46064 fourierdlem20 46132 fourierdlem79 46190 pimdecfgtioc 46720 smfpimcclem 46812 prmdvdsfmtnof1lem1 47589 |
| Copyright terms: Public domain | W3C validator |