MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabf Structured version   Visualization version   GIF version

Theorem elrabf 3646
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1 𝑥𝐴
elrabf.2 𝑥𝐵
elrabf.3 𝑥𝜓
elrabf.4 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrabf (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))

Proof of Theorem elrabf
StepHypRef Expression
1 elex 3459 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → 𝐴 ∈ V)
2 elex 3459 . . 3 (𝐴𝐵𝐴 ∈ V)
32adantr 480 . 2 ((𝐴𝐵𝜓) → 𝐴 ∈ V)
4 df-rab 3397 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
54eleq2i 2820 . . 3 (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)})
6 elrabf.1 . . . 4 𝑥𝐴
7 elrabf.2 . . . . . 6 𝑥𝐵
86, 7nfel 2906 . . . . 5 𝑥 𝐴𝐵
9 elrabf.3 . . . . 5 𝑥𝜓
108, 9nfan 1899 . . . 4 𝑥(𝐴𝐵𝜓)
11 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
12 elrabf.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
1311, 12anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
146, 10, 13elabgf 3632 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
155, 14bitrid 283 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓)))
161, 3, 15pm5.21nii 378 1 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  {crab 3396  Vcvv 3438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440
This theorem is referenced by:  rabtru  3647  invdisjrab  5082  rabxfrd  5359  f1ossf1o  7066  onminsb  7734  nnawordex  8562  tskwe  9865  rabssnn0fi  13912  iundisj  25466  sltval2  27585  iundisjf  32552  iundisjfi  32758  bnj1388  35019  phpreu  37603  poimirlem26  37645  sticksstones1  42139  rfcnpre3  45031  rfcnpre4  45032  uzwo4  45051  disjinfi  45190  allbutfiinf  45419  fsumiunss  45576  fnlimfvre  45675  stoweidlem26  46027  stoweidlem27  46028  stoweidlem31  46032  stoweidlem34  46035  stoweidlem51  46052  stoweidlem52  46053  stoweidlem59  46060  fourierdlem20  46128  fourierdlem79  46186  pimdecfgtioc  46716  smfpimcclem  46808  prmdvdsfmtnof1lem1  47588
  Copyright terms: Public domain W3C validator