Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralab2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ralab2 3627 as of 1-Dec-2023. (Contributed by Mario Carneiro, 3-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralab2OLD | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓)) | |
2 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
3 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
4 | 2, 3 | nfim 1900 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) |
5 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥(𝜑 → 𝜒) | |
6 | eleq1w 2821 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
7 | abid 2719 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | bitrdi 286 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ (𝜑 → 𝜒))) |
11 | 4, 5, 10 | cbvalv1 2340 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ ∀𝑦(𝜑 → 𝜒)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 {cab 2715 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 df-ral 3068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |