MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab2 Structured version   Visualization version   GIF version

Theorem ralrab2 3635
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralrab2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 3073 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21raleqi 3346 . 2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43ralab2 3634 . 2 (∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∀𝑦((𝑦𝐴𝜑) → 𝜒))
5 impexp 451 . . . 4 (((𝑦𝐴𝜑) → 𝜒) ↔ (𝑦𝐴 → (𝜑𝜒)))
65albii 1822 . . 3 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
7 df-ral 3069 . . 3 (∀𝑦𝐴 (𝜑𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
86, 7bitr4i 277 . 2 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 297 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2106  {cab 2715  wral 3064  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-ral 3069  df-rab 3073
This theorem is referenced by:  efgsf  19335  ghmcnp  23266  nmogelb  23880  pntlem3  26757  sstotbnd2  35932
  Copyright terms: Public domain W3C validator