![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrab2 | Structured version Visualization version GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralrab2 | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3407 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | raleqi 3310 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓) |
3 | ralab2.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
4 | 3 | ralab2 3659 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓 ↔ ∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒)) |
5 | impexp 452 | . . . 4 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ (𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) | |
6 | 5 | albii 1822 | . . 3 ⊢ (∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) |
7 | df-ral 3062 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 → 𝜒) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
9 | 2, 4, 8 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2710 ∀wral 3061 {crab 3406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-ral 3062 df-rab 3407 |
This theorem is referenced by: efgsf 19519 ghmcnp 23489 nmogelb 24103 pntlem3 26980 sstotbnd2 36283 |
Copyright terms: Public domain | W3C validator |