Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aacllem Structured version   Visualization version   GIF version

Theorem aacllem 49613
Description: Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.)
Hypotheses
Ref Expression
aacllem.0 (𝜑𝐴 ∈ ℂ)
aacllem.1 (𝜑𝑁 ∈ ℕ0)
aacllem.2 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
aacllem.3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
aacllem.4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))
Assertion
Ref Expression
aacllem (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝑁,𝑛   𝑘,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐶(𝑘,𝑛)   𝑋(𝑛)

Proof of Theorem aacllem
Dummy variables 𝑤 𝑥 𝑦 𝐵 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aacllem.0 . 2 (𝜑𝐴 ∈ ℂ)
2 aacllem.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
32nn0red 12561 . . . . . 6 (𝜑𝑁 ∈ ℝ)
43ltp1d 12170 . . . . 5 (𝜑𝑁 < (𝑁 + 1))
5 peano2nn0 12539 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
62, 5syl 17 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ0)
76nn0red 12561 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℝ)
83, 7ltnled 11380 . . . . 5 (𝜑 → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
94, 8mpbid 232 . . . 4 (𝜑 → ¬ (𝑁 + 1) ≤ 𝑁)
10 aacllem.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
11103expa 1118 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
1211fmpttd 7104 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ)
13 qex 12975 . . . . . . . . . . 11 ℚ ∈ V
14 ovex 7436 . . . . . . . . . . 11 (1...𝑁) ∈ V
1513, 14elmap 8883 . . . . . . . . . 10 ((𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ)
1612, 15sylibr 234 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)))
1716fmpttd 7104 . . . . . . . 8 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁)))
18 eqid 2735 . . . . . . . . . . . 12 (ℂflds ℚ) = (ℂflds ℚ)
1918qdrng 27581 . . . . . . . . . . 11 (ℂflds ℚ) ∈ DivRing
20 drngring 20694 . . . . . . . . . . 11 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ Ring)
2119, 20ax-mp 5 . . . . . . . . . 10 (ℂflds ℚ) ∈ Ring
22 fzfi 13988 . . . . . . . . . 10 (1...𝑁) ∈ Fin
23 eqid 2735 . . . . . . . . . . 11 ((ℂflds ℚ) freeLMod (1...𝑁)) = ((ℂflds ℚ) freeLMod (1...𝑁))
2423frlmlmod 21707 . . . . . . . . . 10 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod)
2521, 22, 24mp2an 692 . . . . . . . . 9 ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod
26 fzfi 13988 . . . . . . . . 9 (0...𝑁) ∈ Fin
2718qrngbas 27580 . . . . . . . . . . . 12 ℚ = (Base‘(ℂflds ℚ))
2823, 27frlmfibas 21720 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (1...𝑁) ∈ Fin) → (ℚ ↑m (1...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (1...𝑁))))
2919, 22, 28mp2an 692 . . . . . . . . . 10 (ℚ ↑m (1...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (1...𝑁)))
3023frlmsca 21711 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (1...𝑁) ∈ Fin) → (ℂflds ℚ) = (Scalar‘((ℂflds ℚ) freeLMod (1...𝑁))))
3119, 22, 30mp2an 692 . . . . . . . . . 10 (ℂflds ℚ) = (Scalar‘((ℂflds ℚ) freeLMod (1...𝑁)))
32 eqid 2735 . . . . . . . . . 10 ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁))) = ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))
3318qrng0 27582 . . . . . . . . . . . 12 0 = (0g‘(ℂflds ℚ))
3423, 33frlm0 21712 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((1...𝑁) × {0}) = (0g‘((ℂflds ℚ) freeLMod (1...𝑁))))
3521, 22, 34mp2an 692 . . . . . . . . . 10 ((1...𝑁) × {0}) = (0g‘((ℂflds ℚ) freeLMod (1...𝑁)))
36 eqid 2735 . . . . . . . . . . . 12 ((ℂflds ℚ) freeLMod (0...𝑁)) = ((ℂflds ℚ) freeLMod (0...𝑁))
3736, 27frlmfibas 21720 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (0...𝑁) ∈ Fin) → (ℚ ↑m (0...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (0...𝑁))))
3819, 26, 37mp2an 692 . . . . . . . . . 10 (ℚ ↑m (0...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (0...𝑁)))
3929, 31, 32, 35, 33, 38islindf4 21796 . . . . . . . . 9 ((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (0...𝑁) ∈ Fin ∧ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
4025, 26, 39mp3an12 1453 . . . . . . . 8 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
4117, 40syl 17 . . . . . . 7 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
42 elmapi 8861 . . . . . . . . 9 (𝑤 ∈ (ℚ ↑m (0...𝑁)) → 𝑤:(0...𝑁)⟶ℚ)
43 fzfid 13989 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (0...𝑁) ∈ Fin)
44 fvexd 6890 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ V)
4514mptex 7214 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V
4645a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V)
47 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑤:(0...𝑁)⟶ℚ)
4847feqmptd 6946 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑤 = (𝑘 ∈ (0...𝑁) ↦ (𝑤𝑘)))
49 eqidd 2736 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
5043, 44, 46, 48, 49offval2 7689 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶))))
51 fzfid 13989 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
52 ffvelcdm 7070 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
5352adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
5416adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)))
55 cnfldmul 21321 . . . . . . . . . . . . . . . . . . . . . 22 · = (.r‘ℂfld)
5618, 55ressmulr 17319 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ∈ V → · = (.r‘(ℂflds ℚ)))
5713, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 · = (.r‘(ℂflds ℚ))
5823, 29, 27, 51, 53, 54, 32, 57frlmvscafval 21724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (((1...𝑁) × {(𝑤𝑘)}) ∘f · (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
59 fvexd 6890 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤𝑘) ∈ V)
6011adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
61 fconstmpt 5716 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) × {(𝑤𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤𝑘))
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((1...𝑁) × {(𝑤𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤𝑘)))
63 eqidd 2736 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) = (𝑛 ∈ (1...𝑁) ↦ 𝐶))
6451, 59, 60, 62, 63offval2 7689 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (((1...𝑁) × {(𝑤𝑘)}) ∘f · (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
6558, 64eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
6665mpteq2dva 5214 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
6750, 66eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
6867oveq2d 7419 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))))
69 fzfid 13989 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (1...𝑁) ∈ Fin)
7021a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (ℂflds ℚ) ∈ Ring)
7153adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
7211an32s 652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ)
7372adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ)
74 qmulcl 12981 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝑘) ∈ ℚ ∧ 𝐶 ∈ ℚ) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7571, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7675an32s 652 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7776fmpttd 7104 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
7813, 14elmap 8883 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
7977, 78sylibr 234 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)))
80 eqid 2735 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
8114mptex 7214 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ V)
83 snex 5406 . . . . . . . . . . . . . . . . . . 19 {0} ∈ V
8414, 83xpex 7745 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) × {0}) ∈ V
8584a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((1...𝑁) × {0}) ∈ V)
8680, 43, 82, 85fsuppmptdm 9386 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))) finSupp ((1...𝑁) × {0}))
8723, 29, 35, 69, 43, 70, 79, 86frlmgsum 21730 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)))))
88 cnfldbas 21317 . . . . . . . . . . . . . . . . . 18 ℂ = (Base‘ℂfld)
89 cnfldadd 21319 . . . . . . . . . . . . . . . . . 18 + = (+g‘ℂfld)
90 cnfldex 21316 . . . . . . . . . . . . . . . . . . 19 fld ∈ V
9190a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℂfld ∈ V)
92 fzfid 13989 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (0...𝑁) ∈ Fin)
93 qsscn 12974 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℂ
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℚ ⊆ ℂ)
9575fmpttd 7104 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(0...𝑁)⟶ℚ)
96 0z 12597 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℤ
97 zq 12968 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℤ → 0 ∈ ℚ)
9896, 97ax-mp 5 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℚ
9998a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 0 ∈ ℚ)
100 addlid 11416 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
101 addrid 11413 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥)
102100, 101jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
103102adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
10488, 89, 18, 91, 92, 94, 95, 99, 103gsumress 18658 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
105 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑤:(0...𝑁)⟶ℚ)
106 qcn 12977 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑘) ∈ ℚ → (𝑤𝑘) ∈ ℂ)
10752, 106syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
108105, 107sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
109 qcn 12977 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
11011, 109syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ)
111110an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ)
112111adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ)
113108, 112mulcld 11253 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℂ)
11492, 113gsumfsum 21400 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
115104, 114eqtr3d 2772 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
116115mpteq2dva 5214 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)))
11768, 87, 1163eqtrd 2774 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)))
118 qaddcl 12979 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
119118adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
12094, 119, 92, 75, 99fsumcllem 15746 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ ℚ)
121120fmpttd 7104 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
12213, 14elmap 8883 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
123121, 122sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)))
124117, 123eqeltrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ ↑m (1...𝑁)))
125 elmapi 8861 . . . . . . . . . . . . 13 ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ ↑m (1...𝑁)) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ)
126 ffn 6705 . . . . . . . . . . . . 13 ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁))
127124, 125, 1263syl 18 . . . . . . . . . . . 12 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁))
128 c0ex 11227 . . . . . . . . . . . . 13 0 ∈ V
129 fnconstg 6765 . . . . . . . . . . . . 13 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
130128, 129ax-mp 5 . . . . . . . . . . . 12 ((1...𝑁) × {0}) Fn (1...𝑁)
131 nfcv 2898 . . . . . . . . . . . . . 14 𝑛((ℂflds ℚ) freeLMod (1...𝑁))
132 nfcv 2898 . . . . . . . . . . . . . 14 𝑛 Σg
133 nfcv 2898 . . . . . . . . . . . . . . 15 𝑛𝑤
134 nfcv 2898 . . . . . . . . . . . . . . 15 𝑛f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))
135 nfcv 2898 . . . . . . . . . . . . . . . 16 𝑛(0...𝑁)
136 nfmpt1 5220 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ (1...𝑁) ↦ 𝐶)
137135, 136nfmpt 5219 . . . . . . . . . . . . . . 15 𝑛(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
138133, 134, 137nfov 7433 . . . . . . . . . . . . . 14 𝑛(𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
139131, 132, 138nfov 7433 . . . . . . . . . . . . 13 𝑛(((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))
140 nfcv 2898 . . . . . . . . . . . . 13 𝑛((1...𝑁) × {0})
141139, 140eqfnfv2f 7024 . . . . . . . . . . . 12 (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁) ∧ ((1...𝑁) × {0}) Fn (1...𝑁)) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
142127, 130, 141sylancl 586 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
143117fveq1d 6877 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛))
144 sumex 15702 . . . . . . . . . . . . . . 15 Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ V
145 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
146145fvmpt2 6996 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑁) ∧ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ V) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
147144, 146mpan2 691 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
148143, 147sylan9eq 2790 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
149128fvconst2 7195 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
150149adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
151148, 150eqeq12d 2751 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
152151ralbidva 3161 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
153142, 152bitrd 279 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
154153imbi1d 341 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
15542, 154sylan2 593 . . . . . . . 8 ((𝜑𝑤 ∈ (ℚ ↑m (0...𝑁))) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
156155ralbidva 3161 . . . . . . 7 (𝜑 → (∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
15741, 156bitrd 279 . . . . . 6 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
158 drngnzr 20706 . . . . . . . . 9 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ NzRing)
15919, 158ax-mp 5 . . . . . . . 8 (ℂflds ℚ) ∈ NzRing
16031islindf3 21784 . . . . . . . 8 ((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))))))
16125, 159, 160mp2an 692 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
162 eqid 2735 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
16345, 162dmmpti 6681 . . . . . . . . 9 dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁)
164 f1eq2 6769 . . . . . . . . 9 (dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V))
165163, 164ax-mp 5 . . . . . . . 8 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V)
166165anbi1i 624 . . . . . . 7 (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
167161, 166bitri 275 . . . . . 6 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
168 con34b 316 . . . . . . . . 9 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
169 df-nel 3037 . . . . . . . . . . 11 (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬ 𝑤 ∈ {((0...𝑁) × {0})})
170 velsn 4617 . . . . . . . . . . 11 (𝑤 ∈ {((0...𝑁) × {0})} ↔ 𝑤 = ((0...𝑁) × {0}))
171169, 170xchbinx 334 . . . . . . . . . 10 (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬ 𝑤 = ((0...𝑁) × {0}))
172171imbi1i 349 . . . . . . . . 9 ((𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
173168, 172bitr4i 278 . . . . . . . 8 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
174173ralbii 3082 . . . . . . 7 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
175 raldifb 4124 . . . . . . 7 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ↔ ∀𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
176 ralnex 3062 . . . . . . 7 (∀𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
177174, 175, 1763bitri 297 . . . . . 6 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
178157, 167, 1773bitr3g 313 . . . . 5 (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
179 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))
18029, 179lssmre 20921 . . . . . . . . . . . 12 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod → (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))))
18125, 180ax-mp 5 . . . . . . . . . . 11 (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁)))
182181a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))))
183 eqid 2735 . . . . . . . . . . . 12 (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))
184 eqid 2735 . . . . . . . . . . . 12 (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
185179, 183, 184mrclsp 20944 . . . . . . . . . . 11 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod → (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
18625, 185ax-mp 5 . . . . . . . . . 10 (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
187 eqid 2735 . . . . . . . . . 10 (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) = (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
18831islvec 21060 . . . . . . . . . . . . 13 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec ↔ (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ DivRing))
18925, 19, 188mpbir2an 711 . . . . . . . . . . . 12 ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec
190179, 186, 29lssacsex 21103 . . . . . . . . . . . . 13 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec → ((LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (ACS‘(ℚ ↑m (1...𝑁))) ∧ ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))))
191190simprd 495 . . . . . . . . . . . 12 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec → ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})))
192189, 191ax-mp 5 . . . . . . . . . . 11 𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))
193192a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})))
19417frnd 6713 . . . . . . . . . . . 12 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ ↑m (1...𝑁)))
195 dif0 4353 . . . . . . . . . . . 12 ((ℚ ↑m (1...𝑁)) ∖ ∅) = (ℚ ↑m (1...𝑁))
196194, 195sseqtrrdi 4000 . . . . . . . . . . 11 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
197196adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
198 eqid 2735 . . . . . . . . . . . . . . 15 ((ℂflds ℚ) unitVec (1...𝑁)) = ((ℂflds ℚ) unitVec (1...𝑁))
199198, 23, 29uvcff 21749 . . . . . . . . . . . . . 14 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁)))
20021, 22, 199mp2an 692 . . . . . . . . . . . . 13 ((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁))
201 frn 6712 . . . . . . . . . . . . 13 (((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁)) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ (ℚ ↑m (1...𝑁)))
202200, 201ax-mp 5 . . . . . . . . . . . 12 ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ (ℚ ↑m (1...𝑁))
203202, 195sseqtrri 4008 . . . . . . . . . . 11 ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅)
204203a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
205 un0 4369 . . . . . . . . . . . . . 14 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅) = ran ((ℂflds ℚ) unitVec (1...𝑁))
206205fveq2i 6878 . . . . . . . . . . . . 13 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)) = ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁)))
207 eqid 2735 . . . . . . . . . . . . . . . 16 (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁)))
20823, 198, 207frlmlbs 21755 . . . . . . . . . . . . . . 15 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))))
20921, 22, 208mp2an 692 . . . . . . . . . . . . . 14 ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁)))
21029, 207, 183lbssp 21035 . . . . . . . . . . . . . 14 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))) → ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁))) = (ℚ ↑m (1...𝑁)))
211209, 210ax-mp 5 . . . . . . . . . . . . 13 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁))) = (ℚ ↑m (1...𝑁))
212206, 211eqtri 2758 . . . . . . . . . . . 12 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)) = (ℚ ↑m (1...𝑁))
213194, 212sseqtrrdi 4000 . . . . . . . . . . 11 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)))
214213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)))
215 un0 4369 . . . . . . . . . . 11 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) = ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
21625, 159pm3.2i 470 . . . . . . . . . . . . . 14 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing)
217183, 31lindsind2 21777 . . . . . . . . . . . . . 14 (((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
218216, 217mp3an1 1450 . . . . . . . . . . . . 13 ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
219218ralrimiva 3132 . . . . . . . . . . . 12 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
220186, 187ismri2 17642 . . . . . . . . . . . . . 14 (((LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ ↑m (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))))
221181, 194, 220sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))))
222221biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
223219, 222sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
224215, 223eqeltrid 2838 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
225 mptfi 9361 . . . . . . . . . . . . 13 ((0...𝑁) ∈ Fin → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin)
226 rnfi 9350 . . . . . . . . . . . . 13 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin)
22726, 225, 226mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin
228227orci 865 . . . . . . . . . . 11 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ Fin)
229228a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ Fin))
230182, 186, 187, 193, 197, 204, 214, 224, 229mreexexd 17658 . . . . . . . . 9 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))))
231230ex 412 . . . . . . . 8 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))))
232 ovex 7436 . . . . . . . . . . . . 13 ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V
233232rnex 7904 . . . . . . . . . . . 12 ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V
234 elpwi 4582 . . . . . . . . . . . 12 (𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ⊆ ran ((ℂflds ℚ) unitVec (1...𝑁)))
235 ssdomg 9012 . . . . . . . . . . . 12 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V → (𝑣 ⊆ ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))))
236233, 234, 235mpsyl 68 . . . . . . . . . . 11 (𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
237 endomtr 9024 . . . . . . . . . . . . . 14 ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
238237ancoms 458 . . . . . . . . . . . . 13 ((𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
239 f1f1orn 6828 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
240 ovex 7436 . . . . . . . . . . . . . . . . 17 (0...𝑁) ∈ V
241240f1oen 8985 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
242239, 241syl 17 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
243 endomtr 9024 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
244198uvcendim 21805 . . . . . . . . . . . . . . . . . . . 20 (((ℂflds ℚ) ∈ NzRing ∧ (1...𝑁) ∈ Fin) → (1...𝑁) ≈ ran ((ℂflds ℚ) unitVec (1...𝑁)))
245159, 22, 244mp2an 692 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ≈ ran ((ℂflds ℚ) unitVec (1...𝑁))
246245ensymi 9016 . . . . . . . . . . . . . . . . . 18 ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)
247 domentr 9025 . . . . . . . . . . . . . . . . . . 19 (((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (0...𝑁) ≼ (1...𝑁))
248 hashdom 14395 . . . . . . . . . . . . . . . . . . . . 21 (((0...𝑁) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (0...𝑁) ≼ (1...𝑁)))
24926, 22, 248mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (0...𝑁) ≼ (1...𝑁))
250 hashfz0 14448 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (♯‘(0...𝑁)) = (𝑁 + 1))
2512, 250syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(0...𝑁)) = (𝑁 + 1))
252 hashfz1 14362 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
254251, 253breq12d 5132 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑁))
255249, 254bitr3id 285 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0...𝑁) ≼ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑁))
256247, 255imbitrid 244 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))
257246, 256mpan2i 697 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))
258243, 257syl5 34 . . . . . . . . . . . . . . . 16 (𝜑 → (((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (𝑁 + 1) ≤ 𝑁))
259258expd 415 . . . . . . . . . . . . . . 15 (𝜑 → ((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)))
260242, 259syl5 34 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)))
261260com23 86 . . . . . . . . . . . . 13 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
262238, 261syl5 34 . . . . . . . . . . . 12 (𝜑 → ((𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
263262expdimp 452 . . . . . . . . . . 11 ((𝜑𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
264236, 263sylan2 593 . . . . . . . . . 10 ((𝜑𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
265264adantrd 491 . . . . . . . . 9 ((𝜑𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))) → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
266265rexlimdva 3141 . . . . . . . 8 (𝜑 → (∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
267231, 266syld 47 . . . . . . 7 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
268267impd 410 . . . . . 6 (𝜑 → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V) → (𝑁 + 1) ≤ 𝑁))
269268ancomsd 465 . . . . 5 (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (𝑁 + 1) ≤ 𝑁))
270178, 269sylbird 260 . . . 4 (𝜑 → (¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → (𝑁 + 1) ≤ 𝑁))
2719, 270mt3d 148 . . 3 (𝜑 → ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
272 eldifsn 4762 . . . . 5 (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ↔ (𝑤 ∈ (ℚ ↑m (0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0})))
27342anim1i 615 . . . . 5 ((𝑤 ∈ (ℚ ↑m (0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0})) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})))
274272, 273sylbi 217 . . . 4 (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})))
27593a1i 11 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ℚ ⊆ ℂ)
2762adantr 480 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑁 ∈ ℕ0)
277275, 276, 53elplyd 26157 . . . . . . . 8 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ))
278277adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ))
279 uzdisj 13612 . . . . . . . . . . . . . . . . . 18 ((0...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
2802nn0cnd 12562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℂ)
281 pncan1 11659 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
282280, 281syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
283282oveq2d 7419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
284283ineq1d 4194 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((0...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))
285279, 284eqtr3id 2784 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ = ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))
286285eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
287128fconst 6763 . . . . . . . . . . . . . . . . . 18 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0}
288 snssi 4784 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℚ → {0} ⊆ ℚ)
28996, 97, 288mp2b 10 . . . . . . . . . . . . . . . . . . 19 {0} ⊆ ℚ
290289, 93sstri 3968 . . . . . . . . . . . . . . . . . 18 {0} ⊆ ℂ
291 fss 6721 . . . . . . . . . . . . . . . . . 18 ((((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℂ) → ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ)
292287, 290, 291mp2an 692 . . . . . . . . . . . . . . . . 17 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ
293 fun 6739 . . . . . . . . . . . . . . . . 17 (((𝑤:(0...𝑁)⟶ℚ ∧ ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
294292, 293mpanl2 701 . . . . . . . . . . . . . . . 16 ((𝑤:(0...𝑁)⟶ℚ ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
295286, 294sylan2 593 . . . . . . . . . . . . . . 15 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
296295ancoms 458 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
297 nn0uz 12892 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
2986, 297eleqtrdi 2844 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
299 uzsplit 13611 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
300298, 299syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
301297, 300eqtrid 2782 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
302283uneq1d 4142 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
303301, 302eqtr2d 2771 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) = ℕ0)
304 ssequn1 4161 . . . . . . . . . . . . . . . . . 18 (ℚ ⊆ ℂ ↔ (ℚ ∪ ℂ) = ℂ)
30593, 304mpbi 230 . . . . . . . . . . . . . . . . 17 (ℚ ∪ ℂ) = ℂ
306305a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚ ∪ ℂ) = ℂ)
307303, 306feq23d 6700 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ) ↔ (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ))
308307adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ) ↔ (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ))
309296, 308mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ)
310 ffn 6705 . . . . . . . . . . . . . . . 16 (𝑤:(0...𝑁)⟶ℚ → 𝑤 Fn (0...𝑁))
311 fnimadisj 6669 . . . . . . . . . . . . . . . 16 ((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 “ (ℤ‘(𝑁 + 1))) = ∅)
312310, 286, 311syl2anr 597 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 “ (ℤ‘(𝑁 + 1))) = ∅)
3132nn0zd 12612 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
314313peano2zd 12698 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ ℤ)
315 uzid 12865 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
316 ne0i 4316 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (ℤ‘(𝑁 + 1)) ≠ ∅)
317314, 315, 3163syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘(𝑁 + 1)) ≠ ∅)
318 inidm 4202 . . . . . . . . . . . . . . . . . . 19 ((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) = (ℤ‘(𝑁 + 1))
319318neeq1i 2996 . . . . . . . . . . . . . . . . . 18 (((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅ ↔ (ℤ‘(𝑁 + 1)) ≠ ∅)
320317, 319sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅)
321 xpima2 6173 . . . . . . . . . . . . . . . . 17 (((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅ → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
323322adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
324312, 323uneq12d 4144 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 “ (ℤ‘(𝑁 + 1))) ∪ (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1)))) = (∅ ∪ {0}))
325 imaundir 6139 . . . . . . . . . . . . . 14 ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) “ (ℤ‘(𝑁 + 1))) = ((𝑤 “ (ℤ‘(𝑁 + 1))) ∪ (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))))
326 uncom 4133 . . . . . . . . . . . . . . 15 (∅ ∪ {0}) = ({0} ∪ ∅)
327 un0 4369 . . . . . . . . . . . . . . 15 ({0} ∪ ∅) = {0}
328326, 327eqtr2i 2759 . . . . . . . . . . . . . 14 {0} = (∅ ∪ {0})
329324, 325, 3283eqtr4g 2795 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) “ (ℤ‘(𝑁 + 1))) = {0})
330286, 310anim12ci 614 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅))
331 fnconstg 6765 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ V → ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1)))
332128, 331ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1))
333 fvun1 6969 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 Fn (0...𝑁) ∧ ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1)) ∧ (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
334332, 333mp3an2 1451 . . . . . . . . . . . . . . . . . . 19 ((𝑤 Fn (0...𝑁) ∧ (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
335334anassrs 467 . . . . . . . . . . . . . . . . . 18 (((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
336330, 335sylan 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
337336eqcomd 2741 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) = ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘))
338337oveq1d 7418 . . . . . . . . . . . . . . 15 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝑦𝑘)) = (((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘)))
339338sumeq2dv 15716 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘)))
340339mpteq2dv 5215 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘))))
341277, 276, 309, 329, 340coeeq 26182 . . . . . . . . . . . 12 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) = (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})))
342341reseq1d 5965 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)))
343 res0 5970 . . . . . . . . . . . . . 14 (𝑤 ↾ ∅) = ∅
344285reseq2d 5966 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ↾ ∅) = (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
345 res0 5970 . . . . . . . . . . . . . . 15 (((ℤ‘(𝑁 + 1)) × {0}) ↾ ∅) = ∅
346285reseq2d 5966 . . . . . . . . . . . . . . 15 (𝜑 → (((ℤ‘(𝑁 + 1)) × {0}) ↾ ∅) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
347345, 346eqtr3id 2784 . . . . . . . . . . . . . 14 (𝜑 → ∅ = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
348343, 344, 3473eqtr3a 2794 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
349 fss 6721 . . . . . . . . . . . . . . 15 ((((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℚ) → ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ)
350287, 289, 349mp2an 692 . . . . . . . . . . . . . 14 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ
351 fresaunres1 6750 . . . . . . . . . . . . . 14 ((𝑤:(0...𝑁)⟶ℚ ∧ ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
352350, 351mp3an2 1451 . . . . . . . . . . . . 13 ((𝑤:(0...𝑁)⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
353348, 352sylan2 593 . . . . . . . . . . . 12 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
354353ancoms 458 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
355342, 354eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤)
356 fveq2 6875 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝 → (coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) = (coeff‘0𝑝))
357356reseq1d 5965 . . . . . . . . . 10 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝 → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁)))
358 eqtr2 2756 . . . . . . . . . . . 12 ((((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁))) → 𝑤 = ((coeff‘0𝑝) ↾ (0...𝑁)))
359 coe0 26211 . . . . . . . . . . . . . 14 (coeff‘0𝑝) = (ℕ0 × {0})
360359reseq1i 5962 . . . . . . . . . . . . 13 ((coeff‘0𝑝) ↾ (0...𝑁)) = ((ℕ0 × {0}) ↾ (0...𝑁))
361 elfznn0 13635 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℕ0)
362361ssriv 3962 . . . . . . . . . . . . . 14 (0...𝑁) ⊆ ℕ0
363 xpssres 6005 . . . . . . . . . . . . . 14 ((0...𝑁) ⊆ ℕ0 → ((ℕ0 × {0}) ↾ (0...𝑁)) = ((0...𝑁) × {0}))
364362, 363ax-mp 5 . . . . . . . . . . . . 13 ((ℕ0 × {0}) ↾ (0...𝑁)) = ((0...𝑁) × {0})
365360, 364eqtri 2758 . . . . . . . . . . . 12 ((coeff‘0𝑝) ↾ (0...𝑁)) = ((0...𝑁) × {0})
366358, 365eqtrdi 2786 . . . . . . . . . . 11 ((((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁))) → 𝑤 = ((0...𝑁) × {0}))
367366ex 412 . . . . . . . . . 10 (((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 → (((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁)) → 𝑤 = ((0...𝑁) × {0})))
368355, 357, 367syl2im 40 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝𝑤 = ((0...𝑁) × {0})))
369368necon3d 2953 . . . . . . . 8 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ≠ ((0...𝑁) × {0}) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝))
370369impr 454 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝)
371 eldifsn 4762 . . . . . . 7 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ) ∧ (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝))
372278, 370, 371sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
373372adantrr 717 . . . . 5 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
374 oveq1 7410 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦𝑘) = (𝐴𝑘))
375374oveq2d 7419 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑤𝑘) · (𝑦𝑘)) = ((𝑤𝑘) · (𝐴𝑘)))
376375sumeq2sdv 15717 . . . . . . . . . 10 (𝑦 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
377 eqid 2735 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))
378 sumex 15702 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) ∈ V
379376, 377, 378fvmpt 6985 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
3801, 379syl 17 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
381380adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
382107adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
383 aacllem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
384383adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
385110, 384mulcld 11253 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
386385adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
38751, 382, 386fsummulc2 15798 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) = Σ𝑛 ∈ (1...𝑁)((𝑤𝑘) · (𝐶 · 𝑋)))
388 aacllem.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))
389388oveq2d 7419 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)))
390389adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)))
391382adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤𝑘) ∈ ℂ)
392110adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ)
393 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → 𝜑)
394393, 383sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
395391, 392, 394mulassd 11256 . . . . . . . . . . . . . 14 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑤𝑘) · 𝐶) · 𝑋) = ((𝑤𝑘) · (𝐶 · 𝑋)))
396395sumeq2dv 15716 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)((𝑤𝑘) · (𝐶 · 𝑋)))
397387, 390, 3963eqtr4d 2780 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
398397sumeq2dv 15716 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑘 ∈ (0...𝑁𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
399107ad2ant2lr 748 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (𝑤𝑘) ∈ ℂ)
400110anasss 466 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ)
401400adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ)
402399, 401mulcld 11253 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → ((𝑤𝑘) · 𝐶) ∈ ℂ)
403383ad2ant2rl 749 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝑋 ∈ ℂ)
404402, 403mulcld 11253 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (((𝑤𝑘) · 𝐶) · 𝑋) ∈ ℂ)
40543, 69, 404fsumcom 15789 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
406398, 405eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
407406adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
408 nfv 1914 . . . . . . . . . . . 12 𝑛𝜑
409 nfv 1914 . . . . . . . . . . . . 13 𝑛 𝑤:(0...𝑁)⟶ℚ
410 nfra1 3266 . . . . . . . . . . . . 13 𝑛𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0
411409, 410nfan 1899 . . . . . . . . . . . 12 𝑛(𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
412408, 411nfan 1899 . . . . . . . . . . 11 𝑛(𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
413 rspa 3231 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
414413oveq1d 7418 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
415414adantll 714 . . . . . . . . . . . . . 14 (((𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
416415adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
417383adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
41892, 417, 113fsummulc1 15799 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
419418adantlrr 721 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
420383mul02d 11431 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0)
421420adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0)
422416, 419, 4213eqtr3d 2778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0)
423422ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → (𝑛 ∈ (1...𝑁) → Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0))
424412, 423ralrimi 3240 . . . . . . . . . 10 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0)
425424sumeq2d 15715 . . . . . . . . 9 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)0)
426407, 425eqtrd 2770 . . . . . . . 8 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁)0)
42722olci 866 . . . . . . . . 9 ((1...𝑁) ⊆ (ℤ𝐵) ∨ (1...𝑁) ∈ Fin)
428 sumz 15736 . . . . . . . . 9 (((1...𝑁) ⊆ (ℤ𝐵) ∨ (1...𝑁) ∈ Fin) → Σ𝑛 ∈ (1...𝑁)0 = 0)
429427, 428ax-mp 5 . . . . . . . 8 Σ𝑛 ∈ (1...𝑁)0 = 0
430426, 429eqtrdi 2786 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = 0)
431381, 430eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0)
432431adantrlr 723 . . . . 5 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0)
433 fveq1 6874 . . . . . . 7 (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) → (𝑥𝐴) = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴))
434433eqeq1d 2737 . . . . . 6 (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) → ((𝑥𝐴) = 0 ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0))
435434rspcev 3601 . . . . 5 (((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
436373, 432, 435syl2anc 584 . . . 4 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
437274, 436sylanr1 682 . . 3 ((𝜑 ∧ (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
438271, 437rexlimddv 3147 . 2 (𝜑 → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
439 elqaa 26280 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0))
4401, 438, 439sylanbrc 583 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wnel 3036  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  dom cdm 5654  ran crn 5655  cres 5656  cima 5657   Fn wfn 6525  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  f cof 7667  m cmap 8838  cen 8954  cdom 8955  Fincfn 8957  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464  0cn0 12499  cz 12586  cuz 12850  cq 12962  ...cfz 13522  cexp 14077  chash 14346  Σcsu 15700  Basecbs 17226  s cress 17249  .rcmulr 17270  Scalarcsca 17272   ·𝑠 cvsca 17273  0gc0g 17451   Σg cgsu 17452  Moorecmre 17592  mrClscmrc 17593  mrIndcmri 17594  ACScacs 17595  Ringcrg 20191  NzRingcnzr 20470  DivRingcdr 20687  LModclmod 20815  LSubSpclss 20886  LSpanclspn 20926  LBasisclbs 21030  LVecclvec 21058  fldccnfld 21313   freeLMod cfrlm 21704   unitVec cuvc 21740   LIndF clindf 21762  LIndSclinds 21763  0𝑝c0p 25620  Polycply 26139  coeffccoe 26141  𝔸caa 26272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-mri 17598  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-drng 20689  df-lmod 20817  df-lss 20887  df-lsp 20927  df-lmhm 20978  df-lbs 21031  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-cnfld 21314  df-dsmm 21690  df-frlm 21705  df-uvc 21741  df-lindf 21764  df-linds 21765  df-0p 25621  df-ply 26143  df-coe 26145  df-dgr 26146  df-aa 26273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator