Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aacllem Structured version   Visualization version   GIF version

Theorem aacllem 46391
Description: Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.)
Hypotheses
Ref Expression
aacllem.0 (𝜑𝐴 ∈ ℂ)
aacllem.1 (𝜑𝑁 ∈ ℕ0)
aacllem.2 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
aacllem.3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
aacllem.4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))
Assertion
Ref Expression
aacllem (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝑁,𝑛   𝑘,𝑋   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐶(𝑘,𝑛)   𝑋(𝑛)

Proof of Theorem aacllem
Dummy variables 𝑤 𝑥 𝑦 𝐵 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aacllem.0 . 2 (𝜑𝐴 ∈ ℂ)
2 aacllem.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
32nn0red 12224 . . . . . 6 (𝜑𝑁 ∈ ℝ)
43ltp1d 11835 . . . . 5 (𝜑𝑁 < (𝑁 + 1))
5 peano2nn0 12203 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
62, 5syl 17 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ0)
76nn0red 12224 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℝ)
83, 7ltnled 11052 . . . . 5 (𝜑 → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
94, 8mpbid 231 . . . 4 (𝜑 → ¬ (𝑁 + 1) ≤ 𝑁)
10 aacllem.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
11103expa 1116 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
1211fmpttd 6971 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ)
13 qex 12630 . . . . . . . . . . 11 ℚ ∈ V
14 ovex 7288 . . . . . . . . . . 11 (1...𝑁) ∈ V
1513, 14elmap 8617 . . . . . . . . . 10 ((𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ)
1612, 15sylibr 233 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)))
1716fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁)))
18 eqid 2738 . . . . . . . . . . . 12 (ℂflds ℚ) = (ℂflds ℚ)
1918qdrng 26673 . . . . . . . . . . 11 (ℂflds ℚ) ∈ DivRing
20 drngring 19913 . . . . . . . . . . 11 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ Ring)
2119, 20ax-mp 5 . . . . . . . . . 10 (ℂflds ℚ) ∈ Ring
22 fzfi 13620 . . . . . . . . . 10 (1...𝑁) ∈ Fin
23 eqid 2738 . . . . . . . . . . 11 ((ℂflds ℚ) freeLMod (1...𝑁)) = ((ℂflds ℚ) freeLMod (1...𝑁))
2423frlmlmod 20866 . . . . . . . . . 10 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod)
2521, 22, 24mp2an 688 . . . . . . . . 9 ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod
26 fzfi 13620 . . . . . . . . 9 (0...𝑁) ∈ Fin
2718qrngbas 26672 . . . . . . . . . . . 12 ℚ = (Base‘(ℂflds ℚ))
2823, 27frlmfibas 20879 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (1...𝑁) ∈ Fin) → (ℚ ↑m (1...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (1...𝑁))))
2919, 22, 28mp2an 688 . . . . . . . . . 10 (ℚ ↑m (1...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (1...𝑁)))
3023frlmsca 20870 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (1...𝑁) ∈ Fin) → (ℂflds ℚ) = (Scalar‘((ℂflds ℚ) freeLMod (1...𝑁))))
3119, 22, 30mp2an 688 . . . . . . . . . 10 (ℂflds ℚ) = (Scalar‘((ℂflds ℚ) freeLMod (1...𝑁)))
32 eqid 2738 . . . . . . . . . 10 ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁))) = ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))
3318qrng0 26674 . . . . . . . . . . . 12 0 = (0g‘(ℂflds ℚ))
3423, 33frlm0 20871 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((1...𝑁) × {0}) = (0g‘((ℂflds ℚ) freeLMod (1...𝑁))))
3521, 22, 34mp2an 688 . . . . . . . . . 10 ((1...𝑁) × {0}) = (0g‘((ℂflds ℚ) freeLMod (1...𝑁)))
36 eqid 2738 . . . . . . . . . . . 12 ((ℂflds ℚ) freeLMod (0...𝑁)) = ((ℂflds ℚ) freeLMod (0...𝑁))
3736, 27frlmfibas 20879 . . . . . . . . . . 11 (((ℂflds ℚ) ∈ DivRing ∧ (0...𝑁) ∈ Fin) → (ℚ ↑m (0...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (0...𝑁))))
3819, 26, 37mp2an 688 . . . . . . . . . 10 (ℚ ↑m (0...𝑁)) = (Base‘((ℂflds ℚ) freeLMod (0...𝑁)))
3929, 31, 32, 35, 33, 38islindf4 20955 . . . . . . . . 9 ((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (0...𝑁) ∈ Fin ∧ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
4025, 26, 39mp3an12 1449 . . . . . . . 8 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑m (1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
4117, 40syl 17 . . . . . . 7 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0}))))
42 elmapi 8595 . . . . . . . . 9 (𝑤 ∈ (ℚ ↑m (0...𝑁)) → 𝑤:(0...𝑁)⟶ℚ)
43 fzfid 13621 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (0...𝑁) ∈ Fin)
44 fvexd 6771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ V)
4514mptex 7081 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V
4645a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V)
47 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑤:(0...𝑁)⟶ℚ)
4847feqmptd 6819 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑤 = (𝑘 ∈ (0...𝑁) ↦ (𝑤𝑘)))
49 eqidd 2739 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
5043, 44, 46, 48, 49offval2 7531 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶))))
51 fzfid 13621 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
52 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
5352adantll 710 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
5416adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑m (1...𝑁)))
55 cnfldmul 20516 . . . . . . . . . . . . . . . . . . . . . 22 · = (.r‘ℂfld)
5618, 55ressmulr 16943 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ∈ V → · = (.r‘(ℂflds ℚ)))
5713, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 · = (.r‘(ℂflds ℚ))
5823, 29, 27, 51, 53, 54, 32, 57frlmvscafval 20883 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (((1...𝑁) × {(𝑤𝑘)}) ∘f · (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
59 fvexd 6771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤𝑘) ∈ V)
6011adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ)
61 fconstmpt 5640 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) × {(𝑤𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤𝑘))
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((1...𝑁) × {(𝑤𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤𝑘)))
63 eqidd 2739 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) = (𝑛 ∈ (1...𝑁) ↦ 𝐶))
6451, 59, 60, 62, 63offval2 7531 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (((1...𝑁) × {(𝑤𝑘)}) ∘f · (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
6558, 64eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
6665mpteq2dva 5170 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘)( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
6750, 66eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
6867oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))))
69 fzfid 13621 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (1...𝑁) ∈ Fin)
7021a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (ℂflds ℚ) ∈ Ring)
7153adantlr 711 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℚ)
7211an32s 648 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ)
7372adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ)
74 qmulcl 12636 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝑘) ∈ ℚ ∧ 𝐶 ∈ ℚ) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7571, 73, 74syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7675an32s 648 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℚ)
7776fmpttd 6971 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
7813, 14elmap 8617 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
7977, 78sylibr 233 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)))
80 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))
8114mptex 7081 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)) ∈ V)
83 snex 5349 . . . . . . . . . . . . . . . . . . 19 {0} ∈ V
8414, 83xpex 7581 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) × {0}) ∈ V
8584a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((1...𝑁) × {0}) ∈ V)
8680, 43, 82, 85fsuppmptdm 9069 . . . . . . . . . . . . . . . 16 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶))) finSupp ((1...𝑁) × {0}))
8723, 29, 35, 69, 43, 70, 79, 86frlmgsum 20889 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)))))
88 cnfldbas 20514 . . . . . . . . . . . . . . . . . 18 ℂ = (Base‘ℂfld)
89 cnfldadd 20515 . . . . . . . . . . . . . . . . . 18 + = (+g‘ℂfld)
90 cnfldex 20513 . . . . . . . . . . . . . . . . . . 19 fld ∈ V
9190a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℂfld ∈ V)
92 fzfid 13621 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (0...𝑁) ∈ Fin)
93 qsscn 12629 . . . . . . . . . . . . . . . . . . 19 ℚ ⊆ ℂ
9493a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℚ ⊆ ℂ)
9575fmpttd 6971 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)):(0...𝑁)⟶ℚ)
96 0z 12260 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℤ
97 zq 12623 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℤ → 0 ∈ ℚ)
9896, 97ax-mp 5 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℚ
9998a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 0 ∈ ℚ)
100 addid2 11088 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
101 addid1 11085 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥)
102100, 101jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
103102adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
10488, 89, 18, 91, 92, 94, 95, 99, 103gsumress 18281 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))))
105 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑤:(0...𝑁)⟶ℚ)
106 qcn 12632 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑘) ∈ ℚ → (𝑤𝑘) ∈ ℂ)
10752, 106syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
108105, 107sylan 579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
109 qcn 12632 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
11011, 109syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ)
111110an32s 648 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ)
112111adantllr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ)
113108, 112mulcld 10926 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · 𝐶) ∈ ℂ)
11492, 113gsumfsum 20577 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
115104, 114eqtr3d 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
116115mpteq2dva 5170 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ ((ℂflds ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)))
11768, 87, 1163eqtrd 2782 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)))
118 qaddcl 12634 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
119118adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
12094, 119, 92, 75, 99fsumcllem 15372 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ ℚ)
121120fmpttd 6971 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
12213, 14elmap 8617 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)):(1...𝑁)⟶ℚ)
123121, 122sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) ∈ (ℚ ↑m (1...𝑁)))
124117, 123eqeltrd 2839 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ ↑m (1...𝑁)))
125 elmapi 8595 . . . . . . . . . . . . 13 ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ ↑m (1...𝑁)) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ)
126 ffn 6584 . . . . . . . . . . . . 13 ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁))
127124, 125, 1263syl 18 . . . . . . . . . . . 12 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁))
128 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
129 fnconstg 6646 . . . . . . . . . . . . 13 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
130128, 129ax-mp 5 . . . . . . . . . . . 12 ((1...𝑁) × {0}) Fn (1...𝑁)
131 nfcv 2906 . . . . . . . . . . . . . 14 𝑛((ℂflds ℚ) freeLMod (1...𝑁))
132 nfcv 2906 . . . . . . . . . . . . . 14 𝑛 Σg
133 nfcv 2906 . . . . . . . . . . . . . . 15 𝑛𝑤
134 nfcv 2906 . . . . . . . . . . . . . . 15 𝑛f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))
135 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑛(0...𝑁)
136 nfmpt1 5178 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ (1...𝑁) ↦ 𝐶)
137135, 136nfmpt 5177 . . . . . . . . . . . . . . 15 𝑛(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
138133, 134, 137nfov 7285 . . . . . . . . . . . . . 14 𝑛(𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
139131, 132, 138nfov 7285 . . . . . . . . . . . . 13 𝑛(((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))
140 nfcv 2906 . . . . . . . . . . . . 13 𝑛((1...𝑁) × {0})
141139, 140eqfnfv2f 6895 . . . . . . . . . . . 12 (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁) ∧ ((1...𝑁) × {0}) Fn (1...𝑁)) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
142127, 130, 141sylancl 585 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
143117fveq1d 6758 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛))
144 sumex 15327 . . . . . . . . . . . . . . 15 Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ V
145 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
146145fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑁) ∧ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) ∈ V) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
147144, 146mpan2 687 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
148143, 147sylan9eq 2799 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶))
149128fvconst2 7061 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
150149adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
151148, 150eqeq12d 2754 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
152151ralbidva 3119 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (∀𝑛 ∈ (1...𝑁)((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
153142, 152bitrd 278 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
154153imbi1d 341 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
15542, 154sylan2 592 . . . . . . . 8 ((𝜑𝑤 ∈ (ℚ ↑m (0...𝑁))) → (((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
156155ralbidva 3119 . . . . . . 7 (𝜑 → (∀𝑤 ∈ (ℚ ↑m (0...𝑁))((((ℂflds ℚ) freeLMod (1...𝑁)) Σg (𝑤f ( ·𝑠 ‘((ℂflds ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
15741, 156bitrd 278 . . . . . 6 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0}))))
158 drngnzr 20446 . . . . . . . . 9 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ NzRing)
15919, 158ax-mp 5 . . . . . . . 8 (ℂflds ℚ) ∈ NzRing
16031islindf3 20943 . . . . . . . 8 ((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))))))
16125, 159, 160mp2an 688 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
162 eqid 2738 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
16345, 162dmmpti 6561 . . . . . . . . 9 dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁)
164 f1eq2 6650 . . . . . . . . 9 (dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V))
165163, 164ax-mp 5 . . . . . . . 8 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V)
166165anbi1i 623 . . . . . . 7 (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
167161, 166bitri 274 . . . . . 6 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂflds ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))))
168 con34b 315 . . . . . . . . 9 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
169 df-nel 3049 . . . . . . . . . . 11 (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬ 𝑤 ∈ {((0...𝑁) × {0})})
170 velsn 4574 . . . . . . . . . . 11 (𝑤 ∈ {((0...𝑁) × {0})} ↔ 𝑤 = ((0...𝑁) × {0}))
171169, 170xchbinx 333 . . . . . . . . . 10 (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬ 𝑤 = ((0...𝑁) × {0}))
172171imbi1i 349 . . . . . . . . 9 ((𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
173168, 172bitr4i 277 . . . . . . . 8 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
174173ralbii 3090 . . . . . . 7 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ ↑m (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
175 raldifb 4075 . . . . . . 7 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ↔ ∀𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
176 ralnex 3163 . . . . . . 7 (∀𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ¬ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
177174, 175, 1763bitri 296 . . . . . 6 (∀𝑤 ∈ (ℚ ↑m (0...𝑁))(∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
178157, 167, 1773bitr3g 312 . . . . 5 (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
179 eqid 2738 . . . . . . . . . . . . 13 (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))
18029, 179lssmre 20143 . . . . . . . . . . . 12 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod → (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))))
18125, 180ax-mp 5 . . . . . . . . . . 11 (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁)))
182181a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))))
183 eqid 2738 . . . . . . . . . . . 12 (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))
184 eqid 2738 . . . . . . . . . . . 12 (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
185179, 183, 184mrclsp 20166 . . . . . . . . . . 11 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod → (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
18625, 185ax-mp 5 . . . . . . . . . 10 (LSpan‘((ℂflds ℚ) freeLMod (1...𝑁))) = (mrCls‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
187 eqid 2738 . . . . . . . . . 10 (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) = (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))
18831islvec 20281 . . . . . . . . . . . . 13 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec ↔ (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ DivRing))
18925, 19, 188mpbir2an 707 . . . . . . . . . . . 12 ((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec
190179, 186, 29lssacsex 20321 . . . . . . . . . . . . 13 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec → ((LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (ACS‘(ℚ ↑m (1...𝑁))) ∧ ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))))
191190simprd 495 . . . . . . . . . . . 12 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LVec → ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})))
192189, 191ax-mp 5 . . . . . . . . . . 11 𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))
193192a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ∀𝑧 ∈ 𝒫 (ℚ ↑m (1...𝑁))∀𝑥 ∈ (ℚ ↑m (1...𝑁))∀𝑦 ∈ (((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})))
19417frnd 6592 . . . . . . . . . . . 12 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ ↑m (1...𝑁)))
195 dif0 4303 . . . . . . . . . . . 12 ((ℚ ↑m (1...𝑁)) ∖ ∅) = (ℚ ↑m (1...𝑁))
196194, 195sseqtrrdi 3968 . . . . . . . . . . 11 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
197196adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
198 eqid 2738 . . . . . . . . . . . . . . 15 ((ℂflds ℚ) unitVec (1...𝑁)) = ((ℂflds ℚ) unitVec (1...𝑁))
199198, 23, 29uvcff 20908 . . . . . . . . . . . . . 14 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁)))
20021, 22, 199mp2an 688 . . . . . . . . . . . . 13 ((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁))
201 frn 6591 . . . . . . . . . . . . 13 (((ℂflds ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑m (1...𝑁)) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ (ℚ ↑m (1...𝑁)))
202200, 201ax-mp 5 . . . . . . . . . . . 12 ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ (ℚ ↑m (1...𝑁))
203202, 195sseqtrri 3954 . . . . . . . . . . 11 ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅)
204203a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ⊆ ((ℚ ↑m (1...𝑁)) ∖ ∅))
205 un0 4321 . . . . . . . . . . . . . 14 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅) = ran ((ℂflds ℚ) unitVec (1...𝑁))
206205fveq2i 6759 . . . . . . . . . . . . 13 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)) = ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁)))
207 eqid 2738 . . . . . . . . . . . . . . . 16 (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))) = (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁)))
20823, 198, 207frlmlbs 20914 . . . . . . . . . . . . . . 15 (((ℂflds ℚ) ∈ Ring ∧ (1...𝑁) ∈ Fin) → ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))))
20921, 22, 208mp2an 688 . . . . . . . . . . . . . 14 ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁)))
21029, 207, 183lbssp 20256 . . . . . . . . . . . . . 14 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ (LBasis‘((ℂflds ℚ) freeLMod (1...𝑁))) → ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁))) = (ℚ ↑m (1...𝑁)))
211209, 210ax-mp 5 . . . . . . . . . . . . 13 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘ran ((ℂflds ℚ) unitVec (1...𝑁))) = (ℚ ↑m (1...𝑁))
212206, 211eqtri 2766 . . . . . . . . . . . 12 ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)) = (ℚ ↑m (1...𝑁))
213194, 212sseqtrrdi 3968 . . . . . . . . . . 11 (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)))
214213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran ((ℂflds ℚ) unitVec (1...𝑁)) ∪ ∅)))
215 un0 4321 . . . . . . . . . . 11 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) = ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))
21625, 159pm3.2i 470 . . . . . . . . . . . . . 14 (((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing)
217183, 31lindsind2 20936 . . . . . . . . . . . . . 14 (((((ℂflds ℚ) freeLMod (1...𝑁)) ∈ LMod ∧ (ℂflds ℚ) ∈ NzRing) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
218216, 217mp3an1 1446 . . . . . . . . . . . . 13 ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
219218ralrimiva 3107 . . . . . . . . . . . 12 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))
220186, 187ismri2 17258 . . . . . . . . . . . . . 14 (((LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))) ∈ (Moore‘(ℚ ↑m (1...𝑁))) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ ↑m (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))))
221181, 194, 220sylancr 586 . . . . . . . . . . . . 13 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))) ↔ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))))
222221biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂflds ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
223219, 222sylan2 592 . . . . . . . . . . 11 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
224215, 223eqeltrid 2843 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))
225 mptfi 9048 . . . . . . . . . . . . 13 ((0...𝑁) ∈ Fin → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin)
226 rnfi 9032 . . . . . . . . . . . . 13 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin)
22726, 225, 226mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin
228227orci 861 . . . . . . . . . . 11 (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ Fin)
229228a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ Fin))
230182, 186, 187, 193, 197, 204, 214, 224, 229mreexexd 17274 . . . . . . . . 9 ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → ∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))))
231230ex 412 . . . . . . . 8 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁)))))))
232 ovex 7288 . . . . . . . . . . . . 13 ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V
233232rnex 7733 . . . . . . . . . . . 12 ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V
234 elpwi 4539 . . . . . . . . . . . 12 (𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ⊆ ran ((ℂflds ℚ) unitVec (1...𝑁)))
235 ssdomg 8741 . . . . . . . . . . . 12 (ran ((ℂflds ℚ) unitVec (1...𝑁)) ∈ V → (𝑣 ⊆ ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))))
236233, 234, 235mpsyl 68 . . . . . . . . . . 11 (𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
237 endomtr 8753 . . . . . . . . . . . . . 14 ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
238237ancoms 458 . . . . . . . . . . . . 13 ((𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
239 f1f1orn 6711 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
240 ovex 7288 . . . . . . . . . . . . . . . . 17 (0...𝑁) ∈ V
241240f1oen 8716 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
242239, 241syl 17 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))
243 endomtr 8753 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)))
244198uvcendim 20964 . . . . . . . . . . . . . . . . . . . 20 (((ℂflds ℚ) ∈ NzRing ∧ (1...𝑁) ∈ Fin) → (1...𝑁) ≈ ran ((ℂflds ℚ) unitVec (1...𝑁)))
245159, 22, 244mp2an 688 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ≈ ran ((ℂflds ℚ) unitVec (1...𝑁))
246245ensymi 8745 . . . . . . . . . . . . . . . . . 18 ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)
247 domentr 8754 . . . . . . . . . . . . . . . . . . 19 (((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (0...𝑁) ≼ (1...𝑁))
248 hashdom 14022 . . . . . . . . . . . . . . . . . . . . 21 (((0...𝑁) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (0...𝑁) ≼ (1...𝑁)))
24926, 22, 248mp2an 688 . . . . . . . . . . . . . . . . . . . 20 ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (0...𝑁) ≼ (1...𝑁))
250 hashfz0 14075 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (♯‘(0...𝑁)) = (𝑁 + 1))
2512, 250syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(0...𝑁)) = (𝑁 + 1))
252 hashfz1 13988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
254251, 253breq12d 5083 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘(0...𝑁)) ≤ (♯‘(1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑁))
255249, 254bitr3id 284 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0...𝑁) ≼ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑁))
256247, 255syl5ib 243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran ((ℂflds ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))
257246, 256mpan2i 693 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...𝑁) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))
258243, 257syl5 34 . . . . . . . . . . . . . . . 16 (𝜑 → (((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (𝑁 + 1) ≤ 𝑁))
259258expd 415 . . . . . . . . . . . . . . 15 (𝜑 → ((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)))
260242, 259syl5 34 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)))
261260com23 86 . . . . . . . . . . . . 13 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
262238, 261syl5 34 . . . . . . . . . . . 12 (𝜑 → ((𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
263262expdimp 452 . . . . . . . . . . 11 ((𝜑𝑣 ≼ ran ((ℂflds ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
264236, 263sylan2 592 . . . . . . . . . 10 ((𝜑𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
265264adantrd 491 . . . . . . . . 9 ((𝜑𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))) → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
266265rexlimdva 3212 . . . . . . . 8 (𝜑 → (∃𝑣 ∈ 𝒫 ran ((ℂflds ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈ (mrInd‘(LSubSp‘((ℂflds ℚ) freeLMod (1...𝑁))))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
267231, 266syld 47 . . . . . . 7 (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁)))
268267impd 410 . . . . . 6 (𝜑 → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁))) ∧ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V) → (𝑁 + 1) ≤ 𝑁))
269268ancomsd 465 . . . . 5 (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ (LIndS‘((ℂflds ℚ) freeLMod (1...𝑁)))) → (𝑁 + 1) ≤ 𝑁))
270178, 269sylbird 259 . . . 4 (𝜑 → (¬ ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 → (𝑁 + 1) ≤ 𝑁))
2719, 270mt3d 148 . . 3 (𝜑 → ∃𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
272 eldifsn 4717 . . . . 5 (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ↔ (𝑤 ∈ (ℚ ↑m (0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0})))
27342anim1i 614 . . . . 5 ((𝑤 ∈ (ℚ ↑m (0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0})) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})))
274272, 273sylbi 216 . . . 4 (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})))
27593a1i 11 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ℚ ⊆ ℂ)
2762adantr 480 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → 𝑁 ∈ ℕ0)
277275, 276, 53elplyd 25268 . . . . . . . 8 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ))
278277adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ))
279 uzdisj 13258 . . . . . . . . . . . . . . . . . 18 ((0...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
2802nn0cnd 12225 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℂ)
281 pncan1 11329 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
282280, 281syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
283282oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
284283ineq1d 4142 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((0...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))
285279, 284eqtr3id 2793 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ = ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))
286285eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
287128fconst 6644 . . . . . . . . . . . . . . . . . 18 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0}
288 snssi 4738 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℚ → {0} ⊆ ℚ)
28996, 97, 288mp2b 10 . . . . . . . . . . . . . . . . . . 19 {0} ⊆ ℚ
290289, 93sstri 3926 . . . . . . . . . . . . . . . . . 18 {0} ⊆ ℂ
291 fss 6601 . . . . . . . . . . . . . . . . . 18 ((((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℂ) → ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ)
292287, 290, 291mp2an 688 . . . . . . . . . . . . . . . . 17 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ
293 fun 6620 . . . . . . . . . . . . . . . . 17 (((𝑤:(0...𝑁)⟶ℚ ∧ ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℂ) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
294292, 293mpanl2 697 . . . . . . . . . . . . . . . 16 ((𝑤:(0...𝑁)⟶ℚ ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
295286, 294sylan2 592 . . . . . . . . . . . . . . 15 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
296295ancoms 458 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ))
297 nn0uz 12549 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
2986, 297eleqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
299 uzsplit 13257 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
300298, 299syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
301297, 300syl5eq 2791 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
302283uneq1d 4092 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
303301, 302eqtr2d 2779 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) = ℕ0)
304 ssequn1 4110 . . . . . . . . . . . . . . . . . 18 (ℚ ⊆ ℂ ↔ (ℚ ∪ ℂ) = ℂ)
30593, 304mpbi 229 . . . . . . . . . . . . . . . . 17 (ℚ ∪ ℂ) = ℂ
306305a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚ ∪ ℂ) = ℂ)
307303, 306feq23d 6579 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ) ↔ (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ))
308307adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ‘(𝑁 + 1)))⟶(ℚ ∪ ℂ) ↔ (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ))
309296, 308mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})):ℕ0⟶ℂ)
310 ffn 6584 . . . . . . . . . . . . . . . 16 (𝑤:(0...𝑁)⟶ℚ → 𝑤 Fn (0...𝑁))
311 fnimadisj 6549 . . . . . . . . . . . . . . . 16 ((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) → (𝑤 “ (ℤ‘(𝑁 + 1))) = ∅)
312310, 286, 311syl2anr 596 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 “ (ℤ‘(𝑁 + 1))) = ∅)
3132nn0zd 12353 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
314313peano2zd 12358 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ ℤ)
315 uzid 12526 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
316 ne0i 4265 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (ℤ‘(𝑁 + 1)) ≠ ∅)
317314, 315, 3163syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘(𝑁 + 1)) ≠ ∅)
318 inidm 4149 . . . . . . . . . . . . . . . . . . 19 ((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) = (ℤ‘(𝑁 + 1))
319318neeq1i 3007 . . . . . . . . . . . . . . . . . 18 (((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅ ↔ (ℤ‘(𝑁 + 1)) ≠ ∅)
320317, 319sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅)
321 xpima2 6076 . . . . . . . . . . . . . . . . 17 (((ℤ‘(𝑁 + 1)) ∩ (ℤ‘(𝑁 + 1))) ≠ ∅ → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
323322adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))) = {0})
324312, 323uneq12d 4094 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 “ (ℤ‘(𝑁 + 1))) ∪ (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1)))) = (∅ ∪ {0}))
325 imaundir 6043 . . . . . . . . . . . . . 14 ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) “ (ℤ‘(𝑁 + 1))) = ((𝑤 “ (ℤ‘(𝑁 + 1))) ∪ (((ℤ‘(𝑁 + 1)) × {0}) “ (ℤ‘(𝑁 + 1))))
326 uncom 4083 . . . . . . . . . . . . . . 15 (∅ ∪ {0}) = ({0} ∪ ∅)
327 un0 4321 . . . . . . . . . . . . . . 15 ({0} ∪ ∅) = {0}
328326, 327eqtr2i 2767 . . . . . . . . . . . . . 14 {0} = (∅ ∪ {0})
329324, 325, 3283eqtr4g 2804 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) “ (ℤ‘(𝑁 + 1))) = {0})
330286, 310anim12ci 613 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅))
331 fnconstg 6646 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ V → ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1)))
332128, 331ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1))
333 fvun1 6841 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 Fn (0...𝑁) ∧ ((ℤ‘(𝑁 + 1)) × {0}) Fn (ℤ‘(𝑁 + 1)) ∧ (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
334332, 333mp3an2 1447 . . . . . . . . . . . . . . . . . . 19 ((𝑤 Fn (0...𝑁) ∧ (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
335334anassrs 467 . . . . . . . . . . . . . . . . . 18 (((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
336330, 335sylan 579 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤𝑘))
337336eqcomd 2744 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) = ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘))
338337oveq1d 7270 . . . . . . . . . . . . . . 15 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝑦𝑘)) = (((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘)))
339338sumeq2dv 15343 . . . . . . . . . . . . . 14 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘)))
340339mpteq2dv 5172 . . . . . . . . . . . . 13 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦𝑘))))
341277, 276, 309, 329, 340coeeq 25293 . . . . . . . . . . . 12 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) = (𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})))
342341reseq1d 5879 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)))
343 res0 5884 . . . . . . . . . . . . . 14 (𝑤 ↾ ∅) = ∅
344285reseq2d 5880 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ↾ ∅) = (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
345 res0 5884 . . . . . . . . . . . . . . 15 (((ℤ‘(𝑁 + 1)) × {0}) ↾ ∅) = ∅
346285reseq2d 5880 . . . . . . . . . . . . . . 15 (𝜑 → (((ℤ‘(𝑁 + 1)) × {0}) ↾ ∅) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
347345, 346eqtr3id 2793 . . . . . . . . . . . . . 14 (𝜑 → ∅ = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
348343, 344, 3473eqtr3a 2803 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))))
349 fss 6601 . . . . . . . . . . . . . . 15 ((((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℚ) → ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ)
350287, 289, 349mp2an 688 . . . . . . . . . . . . . 14 ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ
351 fresaunres1 6631 . . . . . . . . . . . . . 14 ((𝑤:(0...𝑁)⟶ℚ ∧ ((ℤ‘(𝑁 + 1)) × {0}):(ℤ‘(𝑁 + 1))⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
352350, 351mp3an2 1447 . . . . . . . . . . . . 13 ((𝑤:(0...𝑁)⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1)))) = (((ℤ‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
353348, 352sylan2 592 . . . . . . . . . . . 12 ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
354353ancoms 458 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪ ((ℤ‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤)
355342, 354eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤)
356 fveq2 6756 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝 → (coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) = (coeff‘0𝑝))
357356reseq1d 5879 . . . . . . . . . 10 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝 → ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁)))
358 eqtr2 2762 . . . . . . . . . . . 12 ((((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁))) → 𝑤 = ((coeff‘0𝑝) ↾ (0...𝑁)))
359 coe0 25322 . . . . . . . . . . . . . 14 (coeff‘0𝑝) = (ℕ0 × {0})
360359reseq1i 5876 . . . . . . . . . . . . 13 ((coeff‘0𝑝) ↾ (0...𝑁)) = ((ℕ0 × {0}) ↾ (0...𝑁))
361 elfznn0 13278 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℕ0)
362361ssriv 3921 . . . . . . . . . . . . . 14 (0...𝑁) ⊆ ℕ0
363 xpssres 5917 . . . . . . . . . . . . . 14 ((0...𝑁) ⊆ ℕ0 → ((ℕ0 × {0}) ↾ (0...𝑁)) = ((0...𝑁) × {0}))
364362, 363ax-mp 5 . . . . . . . . . . . . 13 ((ℕ0 × {0}) ↾ (0...𝑁)) = ((0...𝑁) × {0})
365360, 364eqtri 2766 . . . . . . . . . . . 12 ((coeff‘0𝑝) ↾ (0...𝑁)) = ((0...𝑁) × {0})
366358, 365eqtrdi 2795 . . . . . . . . . . 11 ((((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁))) → 𝑤 = ((0...𝑁) × {0}))
367366ex 412 . . . . . . . . . 10 (((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = 𝑤 → (((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝) ↾ (0...𝑁)) → 𝑤 = ((0...𝑁) × {0})))
368355, 357, 367syl2im 40 . . . . . . . . 9 ((𝜑𝑤:(0...𝑁)⟶ℚ) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = 0𝑝𝑤 = ((0...𝑁) × {0})))
369368necon3d 2963 . . . . . . . 8 ((𝜑𝑤:(0...𝑁)⟶ℚ) → (𝑤 ≠ ((0...𝑁) × {0}) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝))
370369impr 454 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝)
371 eldifsn 4717 . . . . . . 7 ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ (Poly‘ℚ) ∧ (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ≠ 0𝑝))
372278, 370, 371sylanbrc 582 . . . . . 6 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
373372adantrr 713 . . . . 5 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
374 oveq1 7262 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦𝑘) = (𝐴𝑘))
375374oveq2d 7271 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑤𝑘) · (𝑦𝑘)) = ((𝑤𝑘) · (𝐴𝑘)))
376375sumeq2sdv 15344 . . . . . . . . . 10 (𝑦 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
377 eqid 2738 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))
378 sumex 15327 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) ∈ V
379376, 377, 378fvmpt 6857 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
3801, 379syl 17 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
381380adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)))
382107adantll 710 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤𝑘) ∈ ℂ)
383 aacllem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
384383adantlr 711 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
385110, 384mulcld 10926 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
386385adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
38751, 382, 386fsummulc2 15424 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) = Σ𝑛 ∈ (1...𝑁)((𝑤𝑘) · (𝐶 · 𝑋)))
388 aacllem.4 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))
389388oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)))
390389adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = ((𝑤𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)))
391382adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤𝑘) ∈ ℂ)
392110adantllr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ)
393 simpll 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → 𝜑)
394393, 383sylan 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
395391, 392, 394mulassd 10929 . . . . . . . . . . . . . 14 ((((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑤𝑘) · 𝐶) · 𝑋) = ((𝑤𝑘) · (𝐶 · 𝑋)))
396395sumeq2dv 15343 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)((𝑤𝑘) · (𝐶 · 𝑋)))
397387, 390, 3963eqtr4d 2788 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
398397sumeq2dv 15343 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑘 ∈ (0...𝑁𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
399107ad2ant2lr 744 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (𝑤𝑘) ∈ ℂ)
400110anasss 466 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ)
401400adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ)
402399, 401mulcld 10926 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → ((𝑤𝑘) · 𝐶) ∈ ℂ)
403383ad2ant2rl 745 . . . . . . . . . . . . 13 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝑋 ∈ ℂ)
404402, 403mulcld 10926 . . . . . . . . . . . 12 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (((𝑤𝑘) · 𝐶) · 𝑋) ∈ ℂ)
40543, 69, 404fsumcom 15415 . . . . . . . . . . 11 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁𝑛 ∈ (1...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
406398, 405eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
407406adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
408 nfv 1918 . . . . . . . . . . . 12 𝑛𝜑
409 nfv 1918 . . . . . . . . . . . . 13 𝑛 𝑤:(0...𝑁)⟶ℚ
410 nfra1 3142 . . . . . . . . . . . . 13 𝑛𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0
411409, 410nfan 1903 . . . . . . . . . . . 12 𝑛(𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
412408, 411nfan 1903 . . . . . . . . . . 11 𝑛(𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0))
413 rspa 3130 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)
414413oveq1d 7270 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
415414adantll 710 . . . . . . . . . . . . . 14 (((𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
416415adantll 710 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = (0 · 𝑋))
417383adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
41892, 417, 113fsummulc1 15425 . . . . . . . . . . . . . 14 (((𝜑𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
419418adantlrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋))
420383mul02d 11103 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0)
421420adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0)
422416, 419, 4213eqtr3d 2786 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0)
423422ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → (𝑛 ∈ (1...𝑁) → Σ𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0))
424412, 423ralrimi 3139 . . . . . . . . . 10 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = 0)
425424sumeq2d 15342 . . . . . . . . 9 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)(((𝑤𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)0)
426407, 425eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = Σ𝑛 ∈ (1...𝑁)0)
42722olci 862 . . . . . . . . 9 ((1...𝑁) ⊆ (ℤ𝐵) ∨ (1...𝑁) ∈ Fin)
428 sumz 15362 . . . . . . . . 9 (((1...𝑁) ⊆ (ℤ𝐵) ∨ (1...𝑁) ∈ Fin) → Σ𝑛 ∈ (1...𝑁)0 = 0)
429427, 428ax-mp 5 . . . . . . . 8 Σ𝑛 ∈ (1...𝑁)0 = 0
430426, 429eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝐴𝑘)) = 0)
431381, 430eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0)
432431adantrlr 719 . . . . 5 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0)
433 fveq1 6755 . . . . . . 7 (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) → (𝑥𝐴) = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴))
434433eqeq1d 2740 . . . . . 6 (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) → ((𝑥𝐴) = 0 ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0))
435434rspcev 3552 . . . . 5 (((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘))) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤𝑘) · (𝑦𝑘)))‘𝐴) = 0) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
436373, 432, 435syl2anc 583 . . . 4 ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
437274, 436sylanr1 678 . . 3 ((𝜑 ∧ (𝑤 ∈ ((ℚ ↑m (0...𝑁)) ∖ {((0...𝑁) × {0})}) ∧ ∀𝑛 ∈ (1...𝑁𝑘 ∈ (0...𝑁)((𝑤𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
438271, 437rexlimddv 3219 . 2 (𝜑 → ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0)
439 elqaa 25387 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑥 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑥𝐴) = 0))
4401, 438, 439sylanbrc 582 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  cen 8688  cdom 8689  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  0cn0 12163  cz 12249  cuz 12511  cq 12617  ...cfz 13168  cexp 13710  chash 13972  Σcsu 15325  Basecbs 16840  s cress 16867  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Moorecmre 17208  mrClscmrc 17209  mrIndcmri 17210  ACScacs 17211  Ringcrg 19698  DivRingcdr 19906  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LBasisclbs 20251  LVecclvec 20279  NzRingcnzr 20441  fldccnfld 20510   freeLMod cfrlm 20863   unitVec cuvc 20899   LIndF clindf 20921  LIndSclinds 20922  0𝑝c0p 24738  Polycply 25250  coeffccoe 25252  𝔸caa 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-mri 17214  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lbs 20252  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-cnfld 20511  df-dsmm 20849  df-frlm 20864  df-uvc 20900  df-lindf 20923  df-linds 20924  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257  df-aa 25380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator