MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmproddvdslem Structured version   Visualization version   GIF version

Theorem coprmproddvdslem 15755
Description: Lemma for coprmproddvds 15756: Induction step. (Contributed by AV, 19-Aug-2020.)
Assertion
Ref Expression
coprmproddvdslem ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Distinct variable groups:   𝑚,𝐹,𝑛   𝑚,𝐾,𝑦,𝑧   𝑦,𝑛,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝐾(𝑛)

Proof of Theorem coprmproddvdslem
StepHypRef Expression
1 nfv 2013 . . . . 5 𝑚((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
2 nfcv 2969 . . . . 5 𝑚(𝐹𝑧)
3 simpll 783 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ∈ Fin)
4 unss 4016 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
5 vex 3417 . . . . . . . . . . 11 𝑧 ∈ V
65snss 4537 . . . . . . . . . 10 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
76biimpri 220 . . . . . . . . 9 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
87adantl 475 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
94, 8sylbir 227 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
109adantr 474 . . . . . 6 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑧 ∈ ℕ)
1110adantl 475 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑧 ∈ ℕ)
12 simplr 785 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ¬ 𝑧𝑦)
13 simprrr 800 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
1413adantr 474 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
15 simpl 476 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
164, 15sylbir 227 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
1716adantr 474 . . . . . . . . 9 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑦 ⊆ ℕ)
1817adantl 475 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
1918sselda 3827 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
2014, 19ffvelrnd 6614 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
2120nncnd 11375 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
22 fveq2 6437 . . . . 5 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
2313, 11ffvelrnd 6614 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
2423nncnd 11375 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℂ)
251, 2, 3, 11, 12, 21, 22, 24fprodsplitsn 15099 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
2625ad2ant2r 753 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
27 simprl 787 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
28 simprr 789 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐹:ℕ⟶ℕ)
2928adantr 474 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐹:ℕ⟶ℕ)
3029adantr 474 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
3117adantr 474 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
3231sselda 3827 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
3330, 32ffvelrnd 6614 . . . . . . . . . . . 12 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
3427, 33fprodnncl 15065 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
3534ex 403 . . . . . . . . . 10 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3635adantr 474 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3736com12 32 . . . . . . . 8 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3837adantr 474 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3938imp 397 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
4039nnzd 11816 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
4128, 10ffvelrnd 6614 . . . . . . . 8 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
4241nnzd 11816 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℤ)
4342adantr 474 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∈ ℤ)
4443adantl 475 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∈ ℤ)
45 nnz 11734 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
4645adantr 474 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐾 ∈ ℤ)
4746adantl 475 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐾 ∈ ℤ)
4847adantr 474 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → 𝐾 ∈ ℤ)
4948adantl 475 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → 𝐾 ∈ ℤ)
5040, 44, 493jca 1162 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ))
51 simpl 476 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝐹:ℕ⟶ℕ)
529adantl 475 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝑧 ∈ ℕ)
5351, 52ffvelrnd 6614 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → (𝐹𝑧) ∈ ℕ)
5453ex 403 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶ℕ → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5554adantl 475 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5655impcom 398 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
5756adantl 475 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
583, 18, 573jca 1162 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
5958adantr 474 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
6013adantr 474 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → 𝐹:ℕ⟶ℕ)
61 ralunb 4023 . . . . . . . . . . . . 13 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
6261simplbi 493 . . . . . . . . . . . 12 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
63 vsnid 4432 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ {𝑧}
6463olci 897 . . . . . . . . . . . . . . . . 17 (𝑧𝑦𝑧 ∈ {𝑧})
65 elun 3982 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
6664, 65mpbir 223 . . . . . . . . . . . . . . . 16 𝑧 ∈ (𝑦 ∪ {𝑧})
6766a1i 11 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
68 snssi 4559 . . . . . . . . . . . . . . . . . . . 20 (𝑚𝑦 → {𝑚} ⊆ 𝑦)
6968ssneld 3829 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑦 → (¬ 𝑧𝑦 → ¬ 𝑧 ∈ {𝑚}))
7069com12 32 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7170adantl 475 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7271adantr 474 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7372imp 397 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → ¬ 𝑧 ∈ {𝑚})
7467, 73eldifd 3809 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
75 fveq2 6437 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝐹𝑛) = (𝐹𝑧))
7675oveq2d 6926 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → ((𝐹𝑚) gcd (𝐹𝑛)) = ((𝐹𝑚) gcd (𝐹𝑧)))
7776eqeq1d 2827 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7877rspcv 3522 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7974, 78syl 17 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8079ralimdva 3171 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8162, 80syl5 34 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8281imp 397 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1)
83 raldifb 3979 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
84 ralunb 4023 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
85 raldifb 3979 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8685biimpi 208 . . . . . . . . . . . . . . . . 17 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8786adantr 474 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8884, 87sylbi 209 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8983, 88sylbir 227 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9089ralimi 3161 . . . . . . . . . . . . 13 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9190adantr 474 . . . . . . . . . . . 12 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9261, 91sylbi 209 . . . . . . . . . . 11 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9392adantl 475 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
94 coprmprod 15754 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9594imp 397 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9659, 60, 82, 93, 95syl31anc 1496 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9796ex 403 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9897adantrd 487 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9998expimpd 447 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
10099adantr 474 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
101100imp 397 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
10284simplbi 493 . . . . . . . . . 10 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10383, 102sylbir 227 . . . . . . . . 9 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
104103ralimi 3161 . . . . . . . 8 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
105104adantr 474 . . . . . . 7 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10661, 105sylbi 209 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
107 ralunb 4023 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 ↔ (∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ ∀𝑚 ∈ {𝑧} (𝐹𝑚) ∥ 𝐾))
108107simplbi 493 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
10985ralbii 3189 . . . . . . . 8 (∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
110109anbi1i 617 . . . . . . 7 ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
11117adantl 475 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
112 simprrl 799 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐾 ∈ ℕ)
113 simprrr 800 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
114111, 112, 113jca32 511 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
115 simplr 785 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
116 pm2.27 42 . . . . . . . . . . . 12 (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
117114, 115, 116syl2anc 579 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
118117exp31 412 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
119118com24 95 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
120119imp 397 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
121120imp 397 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
122110, 121syl5bi 234 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
123106, 108, 122syl2ani 600 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
124123impr 448 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
12522breq1d 4885 . . . . . . . . 9 (𝑚 = 𝑧 → ((𝐹𝑚) ∥ 𝐾 ↔ (𝐹𝑧) ∥ 𝐾))
126125rspcv 3522 . . . . . . . 8 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾))
12766, 126ax-mp 5 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾)
128127adantl 475 . . . . . 6 ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (𝐹𝑧) ∥ 𝐾)
129128adantl 475 . . . . 5 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∥ 𝐾)
130129adantl 475 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∥ 𝐾)
131 coprmdvds2 15747 . . . . 5 (((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) → ((∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾))
132131imp 397 . . . 4 ((((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ (∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13350, 101, 124, 130, 132syl22anc 872 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13426, 133eqbrtrd 4897 . 2 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)
135134exp31 412 1 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wnel 3102  wral 3117  cdif 3795  cun 3796  wss 3798  {csn 4399   class class class wbr 4875  wf 6123  cfv 6127  (class class class)co 6910  Fincfn 8228  1c1 10260   · cmul 10264  cn 11357  cz 11711  cprod 15015  cdvds 15364   gcd cgcd 15596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-prod 15016  df-dvds 15365  df-gcd 15597
This theorem is referenced by:  coprmproddvds  15756
  Copyright terms: Public domain W3C validator