MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmproddvdslem Structured version   Visualization version   GIF version

Theorem coprmproddvdslem 15656
Description: Lemma for coprmproddvds 15657: Induction step. (Contributed by AV, 19-Aug-2020.)
Assertion
Ref Expression
coprmproddvdslem ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Distinct variable groups:   𝑚,𝐹,𝑛   𝑚,𝐾,𝑦,𝑧   𝑦,𝑛,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝐾(𝑛)

Proof of Theorem coprmproddvdslem
StepHypRef Expression
1 nfv 2009 . . . . 5 𝑚((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
2 nfcv 2907 . . . . 5 𝑚(𝐹𝑧)
3 simpll 783 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ∈ Fin)
4 unss 3949 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
5 vex 3353 . . . . . . . . . . 11 𝑧 ∈ V
65snss 4470 . . . . . . . . . 10 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
76biimpri 219 . . . . . . . . 9 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
87adantl 473 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
94, 8sylbir 226 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
109adantr 472 . . . . . 6 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑧 ∈ ℕ)
1110adantl 473 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑧 ∈ ℕ)
12 simplr 785 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ¬ 𝑧𝑦)
13 simprrr 800 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
1413adantr 472 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
15 simpl 474 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
164, 15sylbir 226 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
1716adantr 472 . . . . . . . . 9 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑦 ⊆ ℕ)
1817adantl 473 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
1918sselda 3761 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
2014, 19ffvelrnd 6550 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
2120nncnd 11292 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
22 fveq2 6375 . . . . 5 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
2313, 11ffvelrnd 6550 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
2423nncnd 11292 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℂ)
251, 2, 3, 11, 12, 21, 22, 24fprodsplitsn 15002 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
2625ad2ant2r 753 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
27 simprl 787 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
28 simprr 789 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐹:ℕ⟶ℕ)
2928adantr 472 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐹:ℕ⟶ℕ)
3029adantr 472 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
3117adantr 472 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
3231sselda 3761 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
3330, 32ffvelrnd 6550 . . . . . . . . . . . 12 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
3427, 33fprodnncl 14968 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
3534ex 401 . . . . . . . . . 10 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3635adantr 472 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3736com12 32 . . . . . . . 8 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3837adantr 472 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3938imp 395 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
4039nnzd 11728 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
4128, 10ffvelrnd 6550 . . . . . . . 8 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
4241nnzd 11728 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℤ)
4342adantr 472 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∈ ℤ)
4443adantl 473 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∈ ℤ)
45 nnz 11646 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
4645adantr 472 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐾 ∈ ℤ)
4746adantl 473 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐾 ∈ ℤ)
4847adantr 472 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → 𝐾 ∈ ℤ)
4948adantl 473 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → 𝐾 ∈ ℤ)
5040, 44, 493jca 1158 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ))
51 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝐹:ℕ⟶ℕ)
529adantl 473 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝑧 ∈ ℕ)
5351, 52ffvelrnd 6550 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → (𝐹𝑧) ∈ ℕ)
5453ex 401 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶ℕ → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5554adantl 473 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5655impcom 396 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
5756adantl 473 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
583, 18, 573jca 1158 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
5958adantr 472 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
6013adantr 472 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → 𝐹:ℕ⟶ℕ)
61 ralunb 3956 . . . . . . . . . . . . 13 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
6261simplbi 491 . . . . . . . . . . . 12 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
63 vsnid 4367 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ {𝑧}
6463olci 892 . . . . . . . . . . . . . . . . 17 (𝑧𝑦𝑧 ∈ {𝑧})
65 elun 3915 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
6664, 65mpbir 222 . . . . . . . . . . . . . . . 16 𝑧 ∈ (𝑦 ∪ {𝑧})
6766a1i 11 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
68 snssi 4493 . . . . . . . . . . . . . . . . . . . 20 (𝑚𝑦 → {𝑚} ⊆ 𝑦)
6968ssneld 3763 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑦 → (¬ 𝑧𝑦 → ¬ 𝑧 ∈ {𝑚}))
7069com12 32 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7170adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7271adantr 472 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7372imp 395 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → ¬ 𝑧 ∈ {𝑚})
7467, 73eldifd 3743 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
75 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝐹𝑛) = (𝐹𝑧))
7675oveq2d 6858 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → ((𝐹𝑚) gcd (𝐹𝑛)) = ((𝐹𝑚) gcd (𝐹𝑧)))
7776eqeq1d 2767 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7877rspcv 3457 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7974, 78syl 17 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8079ralimdva 3109 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8162, 80syl5 34 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8281imp 395 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1)
83 raldifb 3912 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
84 ralunb 3956 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
85 raldifb 3912 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8685biimpi 207 . . . . . . . . . . . . . . . . 17 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8786adantr 472 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8884, 87sylbi 208 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8983, 88sylbir 226 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9089ralimi 3099 . . . . . . . . . . . . 13 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9190adantr 472 . . . . . . . . . . . 12 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9261, 91sylbi 208 . . . . . . . . . . 11 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9392adantl 473 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
94 coprmprod 15655 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9594imp 395 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9659, 60, 82, 93, 95syl31anc 1492 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9796ex 401 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9897adantrd 485 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9998expimpd 445 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
10099adantr 472 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
101100imp 395 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
10284simplbi 491 . . . . . . . . . 10 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10383, 102sylbir 226 . . . . . . . . 9 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
104103ralimi 3099 . . . . . . . 8 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
105104adantr 472 . . . . . . 7 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10661, 105sylbi 208 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
107 ralunb 3956 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 ↔ (∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ ∀𝑚 ∈ {𝑧} (𝐹𝑚) ∥ 𝐾))
108107simplbi 491 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
10985ralbii 3127 . . . . . . . 8 (∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
110109anbi1i 617 . . . . . . 7 ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
11117adantl 473 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
112 simprrl 799 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐾 ∈ ℕ)
113 simprrr 800 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
114111, 112, 113jca32 511 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
115 simplr 785 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
116 pm2.27 42 . . . . . . . . . . . 12 (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
117114, 115, 116syl2anc 579 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
118117exp31 410 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
119118com24 95 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
120119imp 395 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
121120imp 395 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
122110, 121syl5bi 233 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
123106, 108, 122syl2ani 600 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
124123impr 446 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
12522breq1d 4819 . . . . . . . . 9 (𝑚 = 𝑧 → ((𝐹𝑚) ∥ 𝐾 ↔ (𝐹𝑧) ∥ 𝐾))
126125rspcv 3457 . . . . . . . 8 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾))
12766, 126ax-mp 5 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾)
128127adantl 473 . . . . . 6 ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (𝐹𝑧) ∥ 𝐾)
129128adantl 473 . . . . 5 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∥ 𝐾)
130129adantl 473 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∥ 𝐾)
131 coprmdvds2 15648 . . . . 5 (((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) → ((∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾))
132131imp 395 . . . 4 ((((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ (∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13350, 101, 124, 130, 132syl22anc 867 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13426, 133eqbrtrd 4831 . 2 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)
135134exp31 410 1 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wnel 3040  wral 3055  cdif 3729  cun 3730  wss 3732  {csn 4334   class class class wbr 4809  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  1c1 10190   · cmul 10194  cn 11274  cz 11624  cprod 14918  cdvds 15265   gcd cgcd 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-prod 14919  df-dvds 15266  df-gcd 15498
This theorem is referenced by:  coprmproddvds  15657
  Copyright terms: Public domain W3C validator