Proof of Theorem coprmproddvdslem
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑚((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 2 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑚(𝐹‘𝑧) |
| 3 | | simpll 766 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ∈ Fin) |
| 4 | | unss 4165 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ) |
| 5 | | vex 3463 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 6 | 5 | snss 4761 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℕ ↔ {𝑧} ⊆
ℕ) |
| 7 | 6 | biimpri 228 |
. . . . . . . . 9
⊢ ({𝑧} ⊆ ℕ → 𝑧 ∈
ℕ) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈
ℕ) |
| 9 | 4, 8 | sylbir 235 |
. . . . . . 7
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑧 ∈
ℕ) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑧 ∈
ℕ) |
| 12 | | simplr 768 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ¬
𝑧 ∈ 𝑦) |
| 13 | | simprrr 781 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → 𝐹:ℕ⟶ℕ) |
| 15 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆
ℕ) |
| 16 | 4, 15 | sylbir 235 |
. . . . . . . . . 10
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ) |
| 17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑦 ⊆
ℕ) |
| 18 | 17 | adantl 481 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆
ℕ) |
| 19 | 18 | sselda 3958 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ ℕ) |
| 20 | 14, 19 | ffvelcdmd 7075 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℕ) |
| 21 | 20 | nncnd 12256 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℂ) |
| 22 | | fveq2 6876 |
. . . . 5
⊢ (𝑚 = 𝑧 → (𝐹‘𝑚) = (𝐹‘𝑧)) |
| 23 | 13, 11 | ffvelcdmd 7075 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹‘𝑧) ∈ ℕ) |
| 24 | 23 | nncnd 12256 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹‘𝑧) ∈ ℂ) |
| 25 | 1, 2, 3, 11, 12, 21, 22, 24 | fprodsplitsn 16005 |
. . . 4
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) |
| 26 | 25 | ad2ant2r 747 |
. . 3
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) |
| 27 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
| 28 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐹:ℕ⟶ℕ) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝐹:ℕ⟶ℕ) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝐹:ℕ⟶ℕ) |
| 31 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ⊆ ℕ) |
| 32 | 31 | sselda 3958 |
. . . . . . . . . . . . 13
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ ℕ) |
| 33 | 30, 32 | ffvelcdmd 7075 |
. . . . . . . . . . . 12
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℕ) |
| 34 | 27, 33 | fprodnncl 15971 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ) |
| 35 | 34 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ)) |
| 36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ)) |
| 37 | 36 | com12 32 |
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ)) |
| 38 | 37 | adantr 480 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ)) |
| 39 | 38 | imp 406 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ) |
| 40 | 39 | nnzd 12615 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℤ) |
| 41 | 28, 10 | ffvelcdmd 7075 |
. . . . . . . 8
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹‘𝑧) ∈ ℕ) |
| 42 | 41 | nnzd 12615 |
. . . . . . 7
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹‘𝑧) ∈ ℤ) |
| 43 | 42 | adantr 480 |
. . . . . 6
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → (𝐹‘𝑧) ∈ ℤ) |
| 44 | 43 | adantl 481 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → (𝐹‘𝑧) ∈ ℤ) |
| 45 | | nnz 12609 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
| 46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
𝐾 ∈
ℤ) |
| 47 | 46 | adantl 481 |
. . . . . . 7
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐾 ∈
ℤ) |
| 48 | 47 | adantr 480 |
. . . . . 6
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → 𝐾 ∈ ℤ) |
| 49 | 48 | adantl 481 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → 𝐾 ∈ ℤ) |
| 50 | 40, 44, 49 | 3jca 1128 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℤ ∧ (𝐹‘𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
| 51 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝐹:ℕ⟶ℕ) |
| 52 | 9 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝑧 ∈
ℕ) |
| 53 | 51, 52 | ffvelcdmd 7075 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑦 ∪ {𝑧}) ⊆ ℕ) →
(𝐹‘𝑧) ∈ ℕ) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℕ⟶ℕ →
((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹‘𝑧) ∈ ℕ)) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹‘𝑧) ∈ ℕ)) |
| 56 | 55 | impcom 407 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹‘𝑧) ∈ ℕ) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹‘𝑧) ∈ ℕ) |
| 58 | 3, 18, 57 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
| 59 | 58 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧
∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
| 60 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧
∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → 𝐹:ℕ⟶ℕ) |
| 61 | | vsnid 4639 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ {𝑧} |
| 62 | 61 | olci 866 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧}) |
| 63 | | elun 4128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧})) |
| 64 | 62, 63 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
| 66 | | snssi 4784 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ 𝑦 → {𝑚} ⊆ 𝑦) |
| 67 | 66 | ssneld 3960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ 𝑦 → (¬ 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑚})) |
| 68 | 67 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑧 ∈ 𝑦 → (𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑚})) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑚})) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ {𝑚})) |
| 71 | 70 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → ¬ 𝑧 ∈ {𝑚}) |
| 72 | 65, 71 | eldifd 3937 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
| 73 | | fveq2 6876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑧 → (𝐹‘𝑛) = (𝐹‘𝑧)) |
| 74 | 73 | oveq2d 7421 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑧 → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = ((𝐹‘𝑚) gcd (𝐹‘𝑧))) |
| 75 | 74 | eqeq1d 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑧 → (((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 76 | 75 | rspcv 3597 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 77 | 72, 76 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚 ∈ 𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 78 | 77 | ralimdva 3152 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 79 | | ralunb 4172 |
. . . . . . . . . . . 12
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 80 | 79 | simplbi 497 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 81 | 78, 80 | impel 505 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧
∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) |
| 82 | | raldifb 4124 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 83 | | ralunb 4172 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ (∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 84 | | raldifb 4124 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 85 | 84 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑛 ∈
𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 87 | 83, 86 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 88 | 82, 87 | sylbir 235 |
. . . . . . . . . . . . . 14
⊢
(∀𝑛 ∈
((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 89 | 88 | ralimi 3073 |
. . . . . . . . . . . . 13
⊢
(∀𝑚 ∈
𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢
((∀𝑚 ∈
𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 91 | 79, 90 | sylbi 217 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 92 | 91 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧
∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 93 | | coprmprod 16680 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹‘𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) → (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 94 | 93 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹‘𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) |
| 95 | 59, 60, 81, 92, 94 | syl31anc 1375 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧
∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) |
| 96 | 95 | ex 412 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 97 | 96 | adantrd 491 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 98 | 97 | expimpd 453 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 99 | 98 | adantr 480 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1)) |
| 100 | 99 | imp 406 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) |
| 101 | 83 | simplbi 497 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 102 | 82, 101 | sylbir 235 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 103 | 102 | ralimi 3073 |
. . . . . . . 8
⊢
(∀𝑚 ∈
𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 104 | 103 | adantr 480 |
. . . . . . 7
⊢
((∀𝑚 ∈
𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 105 | 79, 104 | sylbi 217 |
. . . . . 6
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 106 | | ralunb 4172 |
. . . . . . 7
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾 ↔ (∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾 ∧ ∀𝑚 ∈ {𝑧} (𝐹‘𝑚) ∥ 𝐾)) |
| 107 | 106 | simplbi 497 |
. . . . . 6
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾 → ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) |
| 108 | 84 | ralbii 3082 |
. . . . . . . 8
⊢
(∀𝑚 ∈
𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) |
| 109 | 108 | anbi1i 624 |
. . . . . . 7
⊢
((∀𝑚 ∈
𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) ↔ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 110 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆
ℕ) |
| 111 | | simprrl 780 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐾 ∈
ℕ) |
| 112 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ) |
| 113 | 110, 111,
112 | jca32 515 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 114 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 115 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 116 | 113, 114,
115 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 117 | 116 | exp31 419 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)))) |
| 118 | 117 | com24 95 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) →
((∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)))) |
| 119 | 118 | imp 406 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) →
((∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾))) |
| 120 | 119 | imp 406 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
((∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 121 | 109, 120 | biimtrid 242 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
((∀𝑚 ∈ 𝑦 ∀𝑛 ∈ 𝑦 (𝑛 ∉ {𝑚} → ((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 122 | 105, 107,
121 | syl2ani 607 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) →
((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) |
| 123 | 122 | impr 454 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) |
| 124 | 22 | breq1d 5129 |
. . . . . . . . 9
⊢ (𝑚 = 𝑧 → ((𝐹‘𝑚) ∥ 𝐾 ↔ (𝐹‘𝑧) ∥ 𝐾)) |
| 125 | 124 | rspcv 3597 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾 → (𝐹‘𝑧) ∥ 𝐾)) |
| 126 | 64, 125 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑚 ∈
(𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾 → (𝐹‘𝑧) ∥ 𝐾) |
| 127 | 126 | adantl 481 |
. . . . . 6
⊢
((∀𝑚 ∈
(𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾) → (𝐹‘𝑧) ∥ 𝐾) |
| 128 | 127 | adantl 481 |
. . . . 5
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → (𝐹‘𝑧) ∥ 𝐾) |
| 129 | 128 | adantl 481 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → (𝐹‘𝑧) ∥ 𝐾) |
| 130 | | coprmdvds2 16673 |
. . . . 5
⊢
(((∏𝑚 ∈
𝑦 (𝐹‘𝑚) ∈ ℤ ∧ (𝐹‘𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) → ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾 ∧ (𝐹‘𝑧) ∥ 𝐾) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∥ 𝐾)) |
| 131 | 130 | imp 406 |
. . . 4
⊢
((((∏𝑚 ∈
𝑦 (𝐹‘𝑚) ∈ ℤ ∧ (𝐹‘𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd (𝐹‘𝑧)) = 1) ∧ (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾 ∧ (𝐹‘𝑧) ∥ 𝐾)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∥ 𝐾) |
| 132 | 50, 100, 123, 129, 131 | syl22anc 838 |
. . 3
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∥ 𝐾) |
| 133 | 26, 132 | eqbrtrd 5141 |
. 2
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾) |
| 134 | 133 | exp31 419 |
1
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧
(∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) |