MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifsni Structured version   Visualization version   GIF version

Theorem raldifsni 4776
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
raldifsni (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵))

Proof of Theorem raldifsni
StepHypRef Expression
1 eldifsn 4767 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 349 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → ¬ 𝜑))
3 impexp 450 . . 3 (((𝑥𝐴𝑥𝐵) → ¬ 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵 → ¬ 𝜑)))
4 df-ne 2934 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥 = 𝐵)
54imbi1i 349 . . . . 5 ((𝑥𝐵 → ¬ 𝜑) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑))
6 con34b 316 . . . . 5 ((𝜑𝑥 = 𝐵) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑))
75, 6bitr4i 278 . . . 4 ((𝑥𝐵 → ¬ 𝜑) ↔ (𝜑𝑥 = 𝐵))
87imbi2i 336 . . 3 ((𝑥𝐴 → (𝑥𝐵 → ¬ 𝜑)) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝐵)))
92, 3, 83bitri 297 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝐵)))
109ralbii2 3079 1 (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-v 3466  df-dif 3934  df-sn 4607
This theorem is referenced by:  islindf4  21803  snlindsntor  48414
  Copyright terms: Public domain W3C validator