![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raldifsni | Structured version Visualization version GIF version |
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
raldifsni | ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4783 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑)) |
3 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑))) | |
4 | df-ne 2933 | . . . . . 6 ⊢ (𝑥 ≠ 𝐵 ↔ ¬ 𝑥 = 𝐵) | |
5 | 4 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) |
6 | con34b 316 | . . . . 5 ⊢ ((𝜑 → 𝑥 = 𝐵) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) | |
7 | 5, 6 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (𝜑 → 𝑥 = 𝐵)) |
8 | 7 | imbi2i 336 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
9 | 2, 3, 8 | 3bitri 297 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
10 | 9 | ralbii2 3081 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∖ cdif 3938 {csn 4621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-v 3468 df-dif 3944 df-sn 4622 |
This theorem is referenced by: islindf4 21703 snlindsntor 47365 |
Copyright terms: Public domain | W3C validator |