![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raldifsni | Structured version Visualization version GIF version |
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
raldifsni | ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4536 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | 1 | imbi1i 341 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑)) |
3 | impexp 443 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑))) | |
4 | df-ne 3000 | . . . . . 6 ⊢ (𝑥 ≠ 𝐵 ↔ ¬ 𝑥 = 𝐵) | |
5 | 4 | imbi1i 341 | . . . . 5 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) |
6 | con34b 308 | . . . . 5 ⊢ ((𝜑 → 𝑥 = 𝐵) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) | |
7 | 5, 6 | bitr4i 270 | . . . 4 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (𝜑 → 𝑥 = 𝐵)) |
8 | 7 | imbi2i 328 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
9 | 2, 3, 8 | 3bitri 289 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
10 | 9 | ralbii2 3187 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∀wral 3117 ∖ cdif 3795 {csn 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-v 3416 df-dif 3801 df-sn 4398 |
This theorem is referenced by: islindf4 20544 snlindsntor 43100 |
Copyright terms: Public domain | W3C validator |