MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifsni Structured version   Visualization version   GIF version

Theorem raldifsni 4791
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
raldifsni (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵))

Proof of Theorem raldifsni
StepHypRef Expression
1 eldifsn 4783 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 349 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → ¬ 𝜑))
3 impexp 450 . . 3 (((𝑥𝐴𝑥𝐵) → ¬ 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵 → ¬ 𝜑)))
4 df-ne 2933 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥 = 𝐵)
54imbi1i 349 . . . . 5 ((𝑥𝐵 → ¬ 𝜑) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑))
6 con34b 316 . . . . 5 ((𝜑𝑥 = 𝐵) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑))
75, 6bitr4i 278 . . . 4 ((𝑥𝐵 → ¬ 𝜑) ↔ (𝜑𝑥 = 𝐵))
87imbi2i 336 . . 3 ((𝑥𝐴 → (𝑥𝐵 → ¬ 𝜑)) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝐵)))
92, 3, 83bitri 297 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝐵)))
109ralbii2 3081 1 (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  cdif 3938  {csn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-v 3468  df-dif 3944  df-sn 4622
This theorem is referenced by:  islindf4  21703  snlindsntor  47365
  Copyright terms: Public domain W3C validator