| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raldifsni | Structured version Visualization version GIF version | ||
| Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| raldifsni | ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4767 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑)) |
| 3 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑))) | |
| 4 | df-ne 2934 | . . . . . 6 ⊢ (𝑥 ≠ 𝐵 ↔ ¬ 𝑥 = 𝐵) | |
| 5 | 4 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) |
| 6 | con34b 316 | . . . . 5 ⊢ ((𝜑 → 𝑥 = 𝐵) ↔ (¬ 𝑥 = 𝐵 → ¬ 𝜑)) | |
| 7 | 5, 6 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ≠ 𝐵 → ¬ 𝜑) ↔ (𝜑 → 𝑥 = 𝐵)) |
| 8 | 7 | imbi2i 336 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 → ¬ 𝜑)) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
| 9 | 2, 3, 8 | 3bitri 297 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) → ¬ 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝐵))) |
| 10 | 9 | ralbii2 3079 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-v 3466 df-dif 3934 df-sn 4607 |
| This theorem is referenced by: islindf4 21803 snlindsntor 48414 |
| Copyright terms: Public domain | W3C validator |