Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntor Structured version   Visualization version   GIF version

Theorem snlindsntor 48388
Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntor ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Distinct variable groups:   𝐵,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑍,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem snlindsntor
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2941 . . . . 5 ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍)
21ralbii 3093 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍)
3 raldifsni 4795 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
42, 3bitri 275 . . 3 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑀 ∈ LMod)
65adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑀 ∈ LMod)
76adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ LMod)
8 snlindsntor.s . . . . . . . . . . . . . . . 16 𝑆 = (Base‘𝑅)
9 snlindsntor.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑀)
109fveq2i 6909 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
118, 10eqtri 2765 . . . . . . . . . . . . . . 15 𝑆 = (Base‘(Scalar‘𝑀))
1211oveq1i 7441 . . . . . . . . . . . . . 14 (𝑆m {𝑋}) = ((Base‘(Scalar‘𝑀)) ↑m {𝑋})
1312eleq2i 2833 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1413biimpi 216 . . . . . . . . . . . 12 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1514adantl 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
16 snelpwi 5448 . . . . . . . . . . . . 13 (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀))
17 snlindsntor.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
1816, 17eleq2s 2859 . . . . . . . . . . . 12 (𝑋𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀))
1918ad3antlr 731 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀))
20 lincval 48326 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
217, 15, 19, 20syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
2221eqeq1d 2739 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍))
2322anbi2d 630 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍)))
24 lmodgrp 20865 . . . . . . . . . . . . . 14 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2524grpmndd 18964 . . . . . . . . . . . . 13 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2625ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ Mnd)
27 simpllr 776 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑋𝐵)
28 elmapi 8889 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓:{𝑋}⟶𝑆)
296adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑀 ∈ LMod)
30 snidg 4660 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵𝑋 ∈ {𝑋})
3130adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑋 ∈ {𝑋})
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑋 ∈ {𝑋})
33 ffvelcdm 7101 . . . . . . . . . . . . . . . . 17 ((𝑓:{𝑋}⟶𝑆𝑋 ∈ {𝑋}) → (𝑓𝑋) ∈ 𝑆)
3432, 33sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → (𝑓𝑋) ∈ 𝑆)
35 simprlr 780 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑋𝐵)
36 eqid 2737 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3717, 9, 36, 8lmodvscl 20876 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ (𝑓𝑋) ∈ 𝑆𝑋𝐵) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3829, 34, 35, 37syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3938expcom 413 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4028, 39syl5com 31 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4140impcom 407 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
42 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑓𝑥) = (𝑓𝑋))
43 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑋𝑥 = 𝑋)
4442, 43oveq12d 7449 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓𝑥)( ·𝑠𝑀)𝑥) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4517, 44gsumsn 19972 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑋𝐵 ∧ ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4626, 27, 41, 45syl3anc 1373 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4746eqeq1d 2739 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍))
4830, 33sylan2 593 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆𝑋𝐵) → (𝑓𝑋) ∈ 𝑆)
4948expcom 413 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
5049adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
51 snlindsntor.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑀)
5251oveqi 7444 . . . . . . . . . . . . . . . 16 ((𝑓𝑋) · 𝑋) = ((𝑓𝑋)( ·𝑠𝑀)𝑋)
5352eqeq1i 2742 . . . . . . . . . . . . . . 15 (((𝑓𝑋) · 𝑋) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍)
54 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑓𝑋) → (𝑠 · 𝑋) = ((𝑓𝑋) · 𝑋))
5554eqeq1d 2739 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓𝑋) · 𝑋) = 𝑍))
56 eqeq1 2741 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → (𝑠 = 0 ↔ (𝑓𝑋) = 0 ))
5755, 56imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑓𝑋) → (((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
5857rspcva 3620 . . . . . . . . . . . . . . 15 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
5953, 58biimtrrid 243 . . . . . . . . . . . . . 14 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6059ex 412 . . . . . . . . . . . . 13 ((𝑓𝑋) ∈ 𝑆 → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
6128, 50, 60syl56 36 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓 ∈ (𝑆m {𝑋}) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6261com23 86 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (𝑓 ∈ (𝑆m {𝑋}) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6362imp31 417 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6447, 63sylbid 240 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 → (𝑓𝑋) = 0 ))
6564adantld 490 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍) → (𝑓𝑋) = 0 ))
6623, 65sylbid 240 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6766ralrimiva 3146 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6867ex 412 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
69 impexp 450 . . . . . . . 8 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7028adantl 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓:{𝑋}⟶𝑆)
71 snfi 9083 . . . . . . . . . . 11 {𝑋} ∈ Fin
7271a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ Fin)
73 snlindsntor.0 . . . . . . . . . . . 12 0 = (0g𝑅)
7473fvexi 6920 . . . . . . . . . . 11 0 ∈ V
7574a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 0 ∈ V)
7670, 72, 75fdmfifsupp 9415 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 finSupp 0 )
77 pm2.27 42 . . . . . . . . 9 (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7876, 77syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7969, 78biimtrid 242 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
8079ralimdva 3167 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
81 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
8217, 9, 8, 73, 81, 51snlindsntorlem 48387 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8380, 82syld 47 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8468, 83impbid 212 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
85 fveqeq2 6915 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8685ralsng 4675 . . . . . . . 8 (𝑋𝐵 → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8786adantl 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8887bicomd 223 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((𝑓𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))
8988imbi2d 340 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
9089ralbidv 3178 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
91 snelpwi 5448 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ 𝒫 𝐵)
9291adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → {𝑋} ∈ 𝒫 𝐵)
9392biantrurd 532 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9484, 90, 933bitrd 305 . . 3 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
954, 94bitrid 283 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
96 snex 5436 . . 3 {𝑋} ∈ V
9717, 81, 9, 8, 73islininds 48363 . . 3 (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9896, 5, 97sylancr 587 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9995, 98bitr4d 282 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  LModclmod 20858   linC clinc 48321   linIndS clininds 48357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mulg 19086  df-cntz 19335  df-lmod 20860  df-linc 48323  df-lininds 48359
This theorem is referenced by:  lindssnlvec  48403
  Copyright terms: Public domain W3C validator