Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntor Structured version   Visualization version   GIF version

Theorem snlindsntor 44355
Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntor ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Distinct variable groups:   𝐵,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑍,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem snlindsntor
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 3021 . . . . 5 ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍)
21ralbii 3169 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍)
3 raldifsni 4726 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
42, 3bitri 276 . . 3 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
5 simpl 483 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑀 ∈ LMod)
65adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑀 ∈ LMod)
76adantr 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ LMod)
8 snlindsntor.s . . . . . . . . . . . . . . . 16 𝑆 = (Base‘𝑅)
9 snlindsntor.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑀)
109fveq2i 6669 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
118, 10eqtri 2848 . . . . . . . . . . . . . . 15 𝑆 = (Base‘(Scalar‘𝑀))
1211oveq1i 7161 . . . . . . . . . . . . . 14 (𝑆m {𝑋}) = ((Base‘(Scalar‘𝑀)) ↑m {𝑋})
1312eleq2i 2908 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1413biimpi 217 . . . . . . . . . . . 12 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1514adantl 482 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
16 snelpwi 5332 . . . . . . . . . . . . 13 (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀))
17 snlindsntor.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
1816, 17eleq2s 2935 . . . . . . . . . . . 12 (𝑋𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀))
1918ad3antlr 727 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀))
20 lincval 44293 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
217, 15, 19, 20syl3anc 1365 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
2221eqeq1d 2826 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍))
2322anbi2d 628 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍)))
24 lmodgrp 19563 . . . . . . . . . . . . . 14 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
25 grpmnd 18042 . . . . . . . . . . . . . 14 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2624, 25syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2726ad3antrrr 726 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ Mnd)
28 simpllr 772 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑋𝐵)
29 elmapi 8421 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓:{𝑋}⟶𝑆)
306adantl 482 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑀 ∈ LMod)
31 snidg 4595 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵𝑋 ∈ {𝑋})
3231adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑋 ∈ {𝑋})
3332adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑋 ∈ {𝑋})
34 ffvelrn 6844 . . . . . . . . . . . . . . . . 17 ((𝑓:{𝑋}⟶𝑆𝑋 ∈ {𝑋}) → (𝑓𝑋) ∈ 𝑆)
3533, 34sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → (𝑓𝑋) ∈ 𝑆)
36 simprlr 776 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑋𝐵)
37 eqid 2824 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3817, 9, 37, 8lmodvscl 19573 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ (𝑓𝑋) ∈ 𝑆𝑋𝐵) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3930, 35, 36, 38syl3anc 1365 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
4039expcom 414 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4129, 40syl5com 31 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4241impcom 408 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
43 fveq2 6666 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑓𝑥) = (𝑓𝑋))
44 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑋𝑥 = 𝑋)
4543, 44oveq12d 7169 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓𝑥)( ·𝑠𝑀)𝑥) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4617, 45gsumsn 18996 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑋𝐵 ∧ ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4727, 28, 42, 46syl3anc 1365 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4847eqeq1d 2826 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍))
4931, 34sylan2 592 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆𝑋𝐵) → (𝑓𝑋) ∈ 𝑆)
5049expcom 414 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
5150adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
52 snlindsntor.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑀)
5352oveqi 7164 . . . . . . . . . . . . . . . 16 ((𝑓𝑋) · 𝑋) = ((𝑓𝑋)( ·𝑠𝑀)𝑋)
5453eqeq1i 2829 . . . . . . . . . . . . . . 15 (((𝑓𝑋) · 𝑋) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍)
55 oveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑓𝑋) → (𝑠 · 𝑋) = ((𝑓𝑋) · 𝑋))
5655eqeq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓𝑋) · 𝑋) = 𝑍))
57 eqeq1 2828 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → (𝑠 = 0 ↔ (𝑓𝑋) = 0 ))
5856, 57imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑓𝑋) → (((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
5958rspcva 3624 . . . . . . . . . . . . . . 15 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6054, 59syl5bir 244 . . . . . . . . . . . . . 14 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6160ex 413 . . . . . . . . . . . . 13 ((𝑓𝑋) ∈ 𝑆 → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
6229, 51, 61syl56 36 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓 ∈ (𝑆m {𝑋}) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6362com23 86 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (𝑓 ∈ (𝑆m {𝑋}) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6463imp31 418 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6548, 64sylbid 241 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 → (𝑓𝑋) = 0 ))
6665adantld 491 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍) → (𝑓𝑋) = 0 ))
6723, 66sylbid 241 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6867ralrimiva 3186 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6968ex 413 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
70 impexp 451 . . . . . . . 8 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7129adantl 482 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓:{𝑋}⟶𝑆)
72 snfi 8586 . . . . . . . . . . 11 {𝑋} ∈ Fin
7372a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ Fin)
74 snlindsntor.0 . . . . . . . . . . . 12 0 = (0g𝑅)
7574fvexi 6680 . . . . . . . . . . 11 0 ∈ V
7675a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 0 ∈ V)
7771, 73, 76fdmfifsupp 8835 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 finSupp 0 )
78 pm2.27 42 . . . . . . . . 9 (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7977, 78syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
8070, 79syl5bi 243 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
8180ralimdva 3181 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
82 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
8317, 9, 8, 74, 82, 52snlindsntorlem 44354 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8481, 83syld 47 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8569, 84impbid 213 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
86 fveqeq2 6675 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8786ralsng 4611 . . . . . . . 8 (𝑋𝐵 → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8887adantl 482 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8988bicomd 224 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((𝑓𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))
9089imbi2d 342 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
9190ralbidv 3201 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
92 snelpwi 5332 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ 𝒫 𝐵)
9392adantl 482 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → {𝑋} ∈ 𝒫 𝐵)
9493biantrurd 533 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9585, 91, 943bitrd 306 . . 3 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
964, 95syl5bb 284 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
97 snex 5327 . . 3 {𝑋} ∈ V
9817, 82, 9, 8, 74islininds 44330 . . 3 (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9997, 5, 98sylancr 587 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
10096, 99bitr4d 283 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020  wral 3142  Vcvv 3499  cdif 3936  𝒫 cpw 4541  {csn 4563   class class class wbr 5062  cmpt 5142  wf 6347  cfv 6351  (class class class)co 7151  m cmap 8399  Fincfn 8501   finSupp cfsupp 8825  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17902  Grpcgrp 18035  LModclmod 19556   linC clinc 44288   linIndS clininds 44324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-mulg 18157  df-cntz 18379  df-lmod 19558  df-linc 44290  df-lininds 44326
This theorem is referenced by:  lindssnlvec  44370
  Copyright terms: Public domain W3C validator