Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntor Structured version   Visualization version   GIF version

Theorem snlindsntor 45812
Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntor ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Distinct variable groups:   𝐵,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑍,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem snlindsntor
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2944 . . . . 5 ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍)
21ralbii 3092 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍)
3 raldifsni 4728 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
42, 3bitri 274 . . 3 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
5 simpl 483 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑀 ∈ LMod)
65adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑀 ∈ LMod)
76adantr 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ LMod)
8 snlindsntor.s . . . . . . . . . . . . . . . 16 𝑆 = (Base‘𝑅)
9 snlindsntor.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑀)
109fveq2i 6777 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
118, 10eqtri 2766 . . . . . . . . . . . . . . 15 𝑆 = (Base‘(Scalar‘𝑀))
1211oveq1i 7285 . . . . . . . . . . . . . 14 (𝑆m {𝑋}) = ((Base‘(Scalar‘𝑀)) ↑m {𝑋})
1312eleq2i 2830 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1413biimpi 215 . . . . . . . . . . . 12 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1514adantl 482 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
16 snelpwi 5360 . . . . . . . . . . . . 13 (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀))
17 snlindsntor.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
1816, 17eleq2s 2857 . . . . . . . . . . . 12 (𝑋𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀))
1918ad3antlr 728 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀))
20 lincval 45750 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
217, 15, 19, 20syl3anc 1370 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
2221eqeq1d 2740 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍))
2322anbi2d 629 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍)))
24 lmodgrp 20130 . . . . . . . . . . . . . 14 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2524grpmndd 18589 . . . . . . . . . . . . 13 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2625ad3antrrr 727 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ Mnd)
27 simpllr 773 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑋𝐵)
28 elmapi 8637 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓:{𝑋}⟶𝑆)
296adantl 482 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑀 ∈ LMod)
30 snidg 4595 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵𝑋 ∈ {𝑋})
3130adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑋 ∈ {𝑋})
3231adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑋 ∈ {𝑋})
33 ffvelrn 6959 . . . . . . . . . . . . . . . . 17 ((𝑓:{𝑋}⟶𝑆𝑋 ∈ {𝑋}) → (𝑓𝑋) ∈ 𝑆)
3432, 33sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → (𝑓𝑋) ∈ 𝑆)
35 simprlr 777 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑋𝐵)
36 eqid 2738 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3717, 9, 36, 8lmodvscl 20140 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ (𝑓𝑋) ∈ 𝑆𝑋𝐵) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3829, 34, 35, 37syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3938expcom 414 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4028, 39syl5com 31 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4140impcom 408 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
42 fveq2 6774 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑓𝑥) = (𝑓𝑋))
43 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑋𝑥 = 𝑋)
4442, 43oveq12d 7293 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓𝑥)( ·𝑠𝑀)𝑥) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4517, 44gsumsn 19555 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑋𝐵 ∧ ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4626, 27, 41, 45syl3anc 1370 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4746eqeq1d 2740 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍))
4830, 33sylan2 593 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆𝑋𝐵) → (𝑓𝑋) ∈ 𝑆)
4948expcom 414 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
5049adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
51 snlindsntor.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑀)
5251oveqi 7288 . . . . . . . . . . . . . . . 16 ((𝑓𝑋) · 𝑋) = ((𝑓𝑋)( ·𝑠𝑀)𝑋)
5352eqeq1i 2743 . . . . . . . . . . . . . . 15 (((𝑓𝑋) · 𝑋) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍)
54 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑓𝑋) → (𝑠 · 𝑋) = ((𝑓𝑋) · 𝑋))
5554eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓𝑋) · 𝑋) = 𝑍))
56 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → (𝑠 = 0 ↔ (𝑓𝑋) = 0 ))
5755, 56imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑓𝑋) → (((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
5857rspcva 3559 . . . . . . . . . . . . . . 15 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
5953, 58syl5bir 242 . . . . . . . . . . . . . 14 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6059ex 413 . . . . . . . . . . . . 13 ((𝑓𝑋) ∈ 𝑆 → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
6128, 50, 60syl56 36 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓 ∈ (𝑆m {𝑋}) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6261com23 86 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (𝑓 ∈ (𝑆m {𝑋}) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6362imp31 418 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6447, 63sylbid 239 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 → (𝑓𝑋) = 0 ))
6564adantld 491 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍) → (𝑓𝑋) = 0 ))
6623, 65sylbid 239 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6766ralrimiva 3103 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6867ex 413 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
69 impexp 451 . . . . . . . 8 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7028adantl 482 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓:{𝑋}⟶𝑆)
71 snfi 8834 . . . . . . . . . . 11 {𝑋} ∈ Fin
7271a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ Fin)
73 snlindsntor.0 . . . . . . . . . . . 12 0 = (0g𝑅)
7473fvexi 6788 . . . . . . . . . . 11 0 ∈ V
7574a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 0 ∈ V)
7670, 72, 75fdmfifsupp 9138 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 finSupp 0 )
77 pm2.27 42 . . . . . . . . 9 (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7876, 77syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7969, 78syl5bi 241 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
8079ralimdva 3108 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
81 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
8217, 9, 8, 73, 81, 51snlindsntorlem 45811 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8380, 82syld 47 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8468, 83impbid 211 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
85 fveqeq2 6783 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8685ralsng 4609 . . . . . . . 8 (𝑋𝐵 → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8786adantl 482 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8887bicomd 222 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((𝑓𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))
8988imbi2d 341 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
9089ralbidv 3112 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
91 snelpwi 5360 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ 𝒫 𝐵)
9291adantl 482 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → {𝑋} ∈ 𝒫 𝐵)
9392biantrurd 533 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9484, 90, 933bitrd 305 . . 3 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
954, 94syl5bb 283 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
96 snex 5354 . . 3 {𝑋} ∈ V
9717, 81, 9, 8, 73islininds 45787 . . 3 (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9896, 5, 97sylancr 587 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9995, 98bitr4d 281 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  LModclmod 20123   linC clinc 45745   linIndS clininds 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mulg 18701  df-cntz 18923  df-lmod 20125  df-linc 45747  df-lininds 45783
This theorem is referenced by:  lindssnlvec  45827
  Copyright terms: Public domain W3C validator