Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntor Structured version   Visualization version   GIF version

Theorem snlindsntor 47241
Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (π‘Ÿ Β· π‘š) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists π‘Ž ∈ 𝑅, π‘Ž β‰  0, such that π‘Ž Β· π‘₯ = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐡 = (Baseβ€˜π‘€)
snlindsntor.r 𝑅 = (Scalarβ€˜π‘€)
snlindsntor.s 𝑆 = (Baseβ€˜π‘…)
snlindsntor.0 0 = (0gβ€˜π‘…)
snlindsntor.z 𝑍 = (0gβ€˜π‘€)
snlindsntor.t Β· = ( ·𝑠 β€˜π‘€)
Assertion
Ref Expression
snlindsntor ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ (𝑆 βˆ– { 0 })(𝑠 Β· 𝑋) β‰  𝑍 ↔ {𝑋} linIndS 𝑀))
Distinct variable groups:   𝐡,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑍,𝑠   Β· ,𝑠   0 ,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem snlindsntor
Dummy variables 𝑓 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2940 . . . . 5 ((𝑠 Β· 𝑋) β‰  𝑍 ↔ Β¬ (𝑠 Β· 𝑋) = 𝑍)
21ralbii 3092 . . . 4 (βˆ€π‘  ∈ (𝑆 βˆ– { 0 })(𝑠 Β· 𝑋) β‰  𝑍 ↔ βˆ€π‘  ∈ (𝑆 βˆ– { 0 }) Β¬ (𝑠 Β· 𝑋) = 𝑍)
3 raldifsni 4799 . . . 4 (βˆ€π‘  ∈ (𝑆 βˆ– { 0 }) Β¬ (𝑠 Β· 𝑋) = 𝑍 ↔ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))
42, 3bitri 274 . . 3 (βˆ€π‘  ∈ (𝑆 βˆ– { 0 })(𝑠 Β· 𝑋) β‰  𝑍 ↔ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ 𝑀 ∈ LMod)
65adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ 𝑀 ∈ LMod)
76adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑀 ∈ LMod)
8 snlindsntor.s . . . . . . . . . . . . . . . 16 𝑆 = (Baseβ€˜π‘…)
9 snlindsntor.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalarβ€˜π‘€)
109fveq2i 6895 . . . . . . . . . . . . . . . 16 (Baseβ€˜π‘…) = (Baseβ€˜(Scalarβ€˜π‘€))
118, 10eqtri 2759 . . . . . . . . . . . . . . 15 𝑆 = (Baseβ€˜(Scalarβ€˜π‘€))
1211oveq1i 7422 . . . . . . . . . . . . . 14 (𝑆 ↑m {𝑋}) = ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m {𝑋})
1312eleq2i 2824 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆 ↑m {𝑋}) ↔ 𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m {𝑋}))
1413biimpi 215 . . . . . . . . . . . 12 (𝑓 ∈ (𝑆 ↑m {𝑋}) β†’ 𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m {𝑋}))
1514adantl 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m {𝑋}))
16 snelpwi 5444 . . . . . . . . . . . . 13 (𝑋 ∈ (Baseβ€˜π‘€) β†’ {𝑋} ∈ 𝒫 (Baseβ€˜π‘€))
17 snlindsntor.b . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜π‘€)
1816, 17eleq2s 2850 . . . . . . . . . . . 12 (𝑋 ∈ 𝐡 β†’ {𝑋} ∈ 𝒫 (Baseβ€˜π‘€))
1918ad3antlr 728 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ {𝑋} ∈ 𝒫 (Baseβ€˜π‘€))
20 lincval 47179 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑓( linC β€˜π‘€){𝑋}) = (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
217, 15, 19, 20syl3anc 1370 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ (𝑓( linC β€˜π‘€){𝑋}) = (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
2221eqeq1d 2733 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 ↔ (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = 𝑍))
2322anbi2d 628 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = 𝑍)))
24 lmodgrp 20622 . . . . . . . . . . . . . 14 (𝑀 ∈ LMod β†’ 𝑀 ∈ Grp)
2524grpmndd 18869 . . . . . . . . . . . . 13 (𝑀 ∈ LMod β†’ 𝑀 ∈ Mnd)
2625ad3antrrr 727 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑀 ∈ Mnd)
27 simpllr 773 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑋 ∈ 𝐡)
28 elmapi 8846 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑆 ↑m {𝑋}) β†’ 𝑓:{𝑋}βŸΆπ‘†)
296adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}βŸΆπ‘† ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))) β†’ 𝑀 ∈ LMod)
30 snidg 4663 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ 𝐡 β†’ 𝑋 ∈ {𝑋})
3130adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ 𝑋 ∈ {𝑋})
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ 𝑋 ∈ {𝑋})
33 ffvelcdm 7084 . . . . . . . . . . . . . . . . 17 ((𝑓:{𝑋}βŸΆπ‘† ∧ 𝑋 ∈ {𝑋}) β†’ (π‘“β€˜π‘‹) ∈ 𝑆)
3432, 33sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}βŸΆπ‘† ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))) β†’ (π‘“β€˜π‘‹) ∈ 𝑆)
35 simprlr 777 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}βŸΆπ‘† ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))) β†’ 𝑋 ∈ 𝐡)
36 eqid 2731 . . . . . . . . . . . . . . . . 17 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
3717, 9, 36, 8lmodvscl 20633 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ (π‘“β€˜π‘‹) ∈ 𝑆 ∧ 𝑋 ∈ 𝐡) β†’ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡)
3829, 34, 35, 37syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}βŸΆπ‘† ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ))) β†’ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡)
3938expcom 413 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ (𝑓:{𝑋}βŸΆπ‘† β†’ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡))
4028, 39syl5com 31 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆 ↑m {𝑋}) β†’ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡))
4140impcom 407 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡)
42 fveq2 6892 . . . . . . . . . . . . . 14 (π‘₯ = 𝑋 β†’ (π‘“β€˜π‘₯) = (π‘“β€˜π‘‹))
43 id 22 . . . . . . . . . . . . . 14 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
4442, 43oveq12d 7430 . . . . . . . . . . . . 13 (π‘₯ = 𝑋 β†’ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯) = ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
4517, 44gsumsn 19864 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐡 ∧ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ 𝐡) β†’ (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
4626, 27, 41, 45syl3anc 1370 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
4746eqeq1d 2733 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = 𝑍 ↔ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍))
4830, 33sylan2 592 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}βŸΆπ‘† ∧ 𝑋 ∈ 𝐡) β†’ (π‘“β€˜π‘‹) ∈ 𝑆)
4948expcom 413 . . . . . . . . . . . . . 14 (𝑋 ∈ 𝐡 β†’ (𝑓:{𝑋}βŸΆπ‘† β†’ (π‘“β€˜π‘‹) ∈ 𝑆))
5049adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (𝑓:{𝑋}βŸΆπ‘† β†’ (π‘“β€˜π‘‹) ∈ 𝑆))
51 snlindsntor.t . . . . . . . . . . . . . . . . 17 Β· = ( ·𝑠 β€˜π‘€)
5251oveqi 7425 . . . . . . . . . . . . . . . 16 ((π‘“β€˜π‘‹) Β· 𝑋) = ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋)
5352eqeq1i 2736 . . . . . . . . . . . . . . 15 (((π‘“β€˜π‘‹) Β· 𝑋) = 𝑍 ↔ ((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍)
54 oveq1 7419 . . . . . . . . . . . . . . . . . 18 (𝑠 = (π‘“β€˜π‘‹) β†’ (𝑠 Β· 𝑋) = ((π‘“β€˜π‘‹) Β· 𝑋))
5554eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑠 = (π‘“β€˜π‘‹) β†’ ((𝑠 Β· 𝑋) = 𝑍 ↔ ((π‘“β€˜π‘‹) Β· 𝑋) = 𝑍))
56 eqeq1 2735 . . . . . . . . . . . . . . . . 17 (𝑠 = (π‘“β€˜π‘‹) β†’ (𝑠 = 0 ↔ (π‘“β€˜π‘‹) = 0 ))
5755, 56imbi12d 343 . . . . . . . . . . . . . . . 16 (𝑠 = (π‘“β€˜π‘‹) β†’ (((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) ↔ (((π‘“β€˜π‘‹) Β· 𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
5857rspcva 3611 . . . . . . . . . . . . . . 15 (((π‘“β€˜π‘‹) ∈ 𝑆 ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ (((π‘“β€˜π‘‹) Β· 𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))
5953, 58biimtrrid 242 . . . . . . . . . . . . . 14 (((π‘“β€˜π‘‹) ∈ 𝑆 ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ (((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))
6059ex 412 . . . . . . . . . . . . 13 ((π‘“β€˜π‘‹) ∈ 𝑆 β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) β†’ (((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
6128, 50, 60syl56 36 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (𝑓 ∈ (𝑆 ↑m {𝑋}) β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) β†’ (((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))))
6261com23 86 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) β†’ (𝑓 ∈ (𝑆 ↑m {𝑋}) β†’ (((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))))
6362imp31 417 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ (((π‘“β€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))
6447, 63sylbid 239 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ))
6564adantld 490 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑓 finSupp 0 ∧ (𝑀 Ξ£g (π‘₯ ∈ {𝑋} ↦ ((π‘“β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ))
6623, 65sylbid 239 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ))
6766ralrimiva 3145 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )) β†’ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ))
6867ex 412 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) β†’ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 )))
69 impexp 450 . . . . . . . 8 (((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) ↔ (𝑓 finSupp 0 β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
7028adantl 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑓:{𝑋}βŸΆπ‘†)
71 snfi 9047 . . . . . . . . . . 11 {𝑋} ∈ Fin
7271a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ {𝑋} ∈ Fin)
73 snlindsntor.0 . . . . . . . . . . . 12 0 = (0gβ€˜π‘…)
7473fvexi 6906 . . . . . . . . . . 11 0 ∈ V
7574a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 0 ∈ V)
7670, 72, 75fdmfifsupp 9376 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ 𝑓 finSupp 0 )
77 pm2.27 42 . . . . . . . . 9 (𝑓 finSupp 0 β†’ ((𝑓 finSupp 0 β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )) β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
7876, 77syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ ((𝑓 finSupp 0 β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )) β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
7969, 78biimtrid 241 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) β†’ (((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) β†’ ((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
8079ralimdva 3166 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) β†’ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 )))
81 snlindsntor.z . . . . . . 7 𝑍 = (0gβ€˜π‘€)
8217, 9, 8, 73, 81, 51snlindsntorlem 47240 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓( linC β€˜π‘€){𝑋}) = 𝑍 β†’ (π‘“β€˜π‘‹) = 0 ) β†’ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )))
8380, 82syld 47 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) β†’ βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 )))
8468, 83impbid 211 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) ↔ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 )))
85 fveqeq2 6901 . . . . . . . . 9 (𝑦 = 𝑋 β†’ ((π‘“β€˜π‘¦) = 0 ↔ (π‘“β€˜π‘‹) = 0 ))
8685ralsng 4678 . . . . . . . 8 (𝑋 ∈ 𝐡 β†’ (βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ↔ (π‘“β€˜π‘‹) = 0 ))
8786adantl 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ↔ (π‘“β€˜π‘‹) = 0 ))
8887bicomd 222 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ ((π‘“β€˜π‘‹) = 0 ↔ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))
8988imbi2d 339 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 )))
9089ralbidv 3176 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ (π‘“β€˜π‘‹) = 0 ) ↔ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 )))
91 snelpwi 5444 . . . . . 6 (𝑋 ∈ 𝐡 β†’ {𝑋} ∈ 𝒫 𝐡)
9291adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ {𝑋} ∈ 𝒫 𝐡)
9392biantrurd 532 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))))
9484, 90, 933bitrd 304 . . 3 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ 𝑆 ((𝑠 Β· 𝑋) = 𝑍 β†’ 𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))))
954, 94bitrid 282 . 2 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ (𝑆 βˆ– { 0 })(𝑠 Β· 𝑋) β‰  𝑍 ↔ ({𝑋} ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))))
96 snex 5432 . . 3 {𝑋} ∈ V
9717, 81, 9, 8, 73islininds 47216 . . 3 (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) β†’ ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))))
9896, 5, 97sylancr 586 . 2 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€){𝑋}) = 𝑍) β†’ βˆ€π‘¦ ∈ {𝑋} (π‘“β€˜π‘¦) = 0 ))))
9995, 98bitr4d 281 1 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ (βˆ€π‘  ∈ (𝑆 βˆ– { 0 })(𝑠 Β· 𝑋) β‰  𝑍 ↔ {𝑋} linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  Vcvv 3473   βˆ– cdif 3946  π’« cpw 4603  {csn 4629   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7412   ↑m cmap 8823  Fincfn 8942   finSupp cfsupp 9364  Basecbs 17149  Scalarcsca 17205   ·𝑠 cvsca 17206  0gc0g 17390   Ξ£g cgsu 17391  Mndcmnd 18660  LModclmod 20615   linC clinc 47174   linIndS clininds 47210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-seq 13972  df-hash 14296  df-0g 17392  df-gsum 17393  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-mulg 18988  df-cntz 19223  df-lmod 20617  df-linc 47176  df-lininds 47212
This theorem is referenced by:  lindssnlvec  47256
  Copyright terms: Public domain W3C validator