Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntor Structured version   Visualization version   GIF version

Theorem snlindsntor 48582
Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntor ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Distinct variable groups:   𝐵,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑍,𝑠   · ,𝑠   0 ,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem snlindsntor
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2929 . . . . 5 ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍)
21ralbii 3078 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍)
3 raldifsni 4744 . . . 4 (∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
42, 3bitri 275 . . 3 (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑀 ∈ LMod)
65adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑀 ∈ LMod)
76adantr 480 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ LMod)
8 snlindsntor.s . . . . . . . . . . . . . . . 16 𝑆 = (Base‘𝑅)
9 snlindsntor.r . . . . . . . . . . . . . . . . 17 𝑅 = (Scalar‘𝑀)
109fveq2i 6825 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
118, 10eqtri 2754 . . . . . . . . . . . . . . 15 𝑆 = (Base‘(Scalar‘𝑀))
1211oveq1i 7356 . . . . . . . . . . . . . 14 (𝑆m {𝑋}) = ((Base‘(Scalar‘𝑀)) ↑m {𝑋})
1312eleq2i 2823 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1413biimpi 216 . . . . . . . . . . . 12 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
1514adantl 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}))
16 snelpwi 5383 . . . . . . . . . . . . 13 (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀))
17 snlindsntor.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
1816, 17eleq2s 2849 . . . . . . . . . . . 12 (𝑋𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀))
1918ad3antlr 731 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀))
20 lincval 48520 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
217, 15, 19, 20syl3anc 1373 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))))
2221eqeq1d 2733 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍))
2322anbi2d 630 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍)))
24 lmodgrp 20800 . . . . . . . . . . . . . 14 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2524grpmndd 18859 . . . . . . . . . . . . 13 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2625ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑀 ∈ Mnd)
27 simpllr 775 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑋𝐵)
28 elmapi 8773 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑆m {𝑋}) → 𝑓:{𝑋}⟶𝑆)
296adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑀 ∈ LMod)
30 snidg 4610 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐵𝑋 ∈ {𝑋})
3130adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → 𝑋 ∈ {𝑋})
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → 𝑋 ∈ {𝑋})
33 ffvelcdm 7014 . . . . . . . . . . . . . . . . 17 ((𝑓:{𝑋}⟶𝑆𝑋 ∈ {𝑋}) → (𝑓𝑋) ∈ 𝑆)
3432, 33sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → (𝑓𝑋) ∈ 𝑆)
35 simprlr 779 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → 𝑋𝐵)
36 eqid 2731 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3717, 9, 36, 8lmodvscl 20811 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ (𝑓𝑋) ∈ 𝑆𝑋𝐵) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3829, 34, 35, 37syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ))) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
3938expcom 413 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4028, 39syl5com 31 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑆m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵))
4140impcom 407 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
42 fveq2 6822 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑓𝑥) = (𝑓𝑋))
43 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑋𝑥 = 𝑋)
4442, 43oveq12d 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓𝑥)( ·𝑠𝑀)𝑥) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4517, 44gsumsn 19866 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ 𝑋𝐵 ∧ ((𝑓𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4626, 27, 41, 45syl3anc 1373 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = ((𝑓𝑋)( ·𝑠𝑀)𝑋))
4746eqeq1d 2733 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍))
4830, 33sylan2 593 . . . . . . . . . . . . . . 15 ((𝑓:{𝑋}⟶𝑆𝑋𝐵) → (𝑓𝑋) ∈ 𝑆)
4948expcom 413 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
5049adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓𝑋) ∈ 𝑆))
51 snlindsntor.t . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑀)
5251oveqi 7359 . . . . . . . . . . . . . . . 16 ((𝑓𝑋) · 𝑋) = ((𝑓𝑋)( ·𝑠𝑀)𝑋)
5352eqeq1i 2736 . . . . . . . . . . . . . . 15 (((𝑓𝑋) · 𝑋) = 𝑍 ↔ ((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍)
54 oveq1 7353 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑓𝑋) → (𝑠 · 𝑋) = ((𝑓𝑋) · 𝑋))
5554eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓𝑋) · 𝑋) = 𝑍))
56 eqeq1 2735 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑋) → (𝑠 = 0 ↔ (𝑓𝑋) = 0 ))
5755, 56imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑓𝑋) → (((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
5857rspcva 3570 . . . . . . . . . . . . . . 15 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋) · 𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
5953, 58biimtrrid 243 . . . . . . . . . . . . . 14 (((𝑓𝑋) ∈ 𝑆 ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6059ex 412 . . . . . . . . . . . . 13 ((𝑓𝑋) ∈ 𝑆 → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 )))
6128, 50, 60syl56 36 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (𝑓 ∈ (𝑆m {𝑋}) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6261com23 86 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → (𝑓 ∈ (𝑆m {𝑋}) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))))
6362imp31 417 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓𝑋)( ·𝑠𝑀)𝑋) = 𝑍 → (𝑓𝑋) = 0 ))
6447, 63sylbid 240 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍 → (𝑓𝑋) = 0 ))
6564adantld 490 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓𝑥)( ·𝑠𝑀)𝑥))) = 𝑍) → (𝑓𝑋) = 0 ))
6623, 65sylbid 240 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6766ralrimiva 3124 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ))
6867ex 412 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
69 impexp 450 . . . . . . . 8 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7028adantl 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓:{𝑋}⟶𝑆)
71 snfi 8965 . . . . . . . . . . 11 {𝑋} ∈ Fin
7271a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → {𝑋} ∈ Fin)
73 snlindsntor.0 . . . . . . . . . . . 12 0 = (0g𝑅)
7473fvexi 6836 . . . . . . . . . . 11 0 ∈ V
7574a1i 11 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 0 ∈ V)
7670, 72, 75fdmfifsupp 9259 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → 𝑓 finSupp 0 )
77 pm2.27 42 . . . . . . . . 9 (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7876, 77syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
7969, 78biimtrid 242 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑓 ∈ (𝑆m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
8079ralimdva 3144 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 )))
81 snlindsntor.z . . . . . . 7 𝑍 = (0g𝑀)
8217, 9, 8, 73, 81, 51snlindsntorlem 48581 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8380, 82syld 47 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
8468, 83impbid 212 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 )))
85 fveqeq2 6831 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8685ralsng 4625 . . . . . . . 8 (𝑋𝐵 → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8786adantl 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ↔ (𝑓𝑋) = 0 ))
8887bicomd 223 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((𝑓𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))
8988imbi2d 340 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
9089ralbidv 3155 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 )))
91 snelpwi 5383 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ 𝒫 𝐵)
9291adantl 481 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → {𝑋} ∈ 𝒫 𝐵)
9392biantrurd 532 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9484, 90, 933bitrd 305 . . 3 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
954, 94bitrid 283 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
96 snex 5372 . . 3 {𝑋} ∈ V
9717, 81, 9, 8, 73islininds 48557 . . 3 (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9896, 5, 97sylancr 587 . 2 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓𝑦) = 0 ))))
9995, 98bitr4d 282 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  LModclmod 20793   linC clinc 48515   linIndS clininds 48551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-mulg 18981  df-cntz 19229  df-lmod 20795  df-linc 48517  df-lininds 48553
This theorem is referenced by:  lindssnlvec  48597
  Copyright terms: Public domain W3C validator