| Step | Hyp | Ref
| Expression |
| 1 | | df-ne 2934 |
. . . . 5
⊢ ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍) |
| 2 | 1 | ralbii 3083 |
. . . 4
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍) |
| 3 | | raldifsni 4776 |
. . . 4
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 }) ¬
(𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) |
| 4 | 2, 3 | bitri 275 |
. . 3
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) |
| 5 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ LMod) |
| 6 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → 𝑀 ∈ LMod) |
| 7 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑀 ∈ LMod) |
| 8 | | snlindsntor.s |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = (Base‘𝑅) |
| 9 | | snlindsntor.r |
. . . . . . . . . . . . . . . . 17
⊢ 𝑅 = (Scalar‘𝑀) |
| 10 | 9 | fveq2i 6884 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
| 11 | 8, 10 | eqtri 2759 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 =
(Base‘(Scalar‘𝑀)) |
| 12 | 11 | oveq1i 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ↑m {𝑋}) =
((Base‘(Scalar‘𝑀)) ↑m {𝑋}) |
| 13 | 12 | eleq2i 2827 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
| 14 | 13 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
| 16 | | snelpwi 5423 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
| 17 | | snlindsntor.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑀) |
| 18 | 16, 17 | eleq2s 2853 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
| 19 | 18 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
| 20 | | lincval 48352 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 21 | 7, 15, 19, 20 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 22 | 21 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍)) |
| 23 | 22 | anbi2d 630 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍))) |
| 24 | | lmodgrp 20829 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
| 25 | 24 | grpmndd 18934 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
| 26 | 25 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑀 ∈ Mnd) |
| 27 | | simpllr 775 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑋 ∈ 𝐵) |
| 28 | | elmapi 8868 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → 𝑓:{𝑋}⟶𝑆) |
| 29 | 6 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → 𝑀 ∈ LMod) |
| 30 | | snidg 4641 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋}) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {𝑋}) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → 𝑋 ∈ {𝑋}) |
| 33 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ 𝑋 ∈ {𝑋}) → (𝑓‘𝑋) ∈ 𝑆) |
| 34 | 32, 33 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → (𝑓‘𝑋) ∈ 𝑆) |
| 35 | | simprlr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → 𝑋 ∈ 𝐵) |
| 36 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 37 | 17, 9, 36, 8 | lmodvscl 20840 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑋) ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
| 38 | 29, 34, 35, 37 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
| 39 | 38 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵)) |
| 40 | 28, 39 | syl5com 31 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵)) |
| 41 | 40 | impcom 407 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
| 42 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (𝑓‘𝑥) = (𝑓‘𝑋)) |
| 43 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
| 44 | 42, 43 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
| 45 | 17, 44 | gsumsn 19940 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
| 46 | 26, 27, 41, 45 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
| 47 | 46 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍 ↔ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍)) |
| 48 | 30, 33 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ 𝑋 ∈ 𝐵) → (𝑓‘𝑋) ∈ 𝑆) |
| 49 | 48 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓‘𝑋) ∈ 𝑆)) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓‘𝑋) ∈ 𝑆)) |
| 51 | | snlindsntor.t |
. . . . . . . . . . . . . . . . 17
⊢ · = (
·𝑠 ‘𝑀) |
| 52 | 51 | oveqi 7423 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑋) · 𝑋) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) |
| 53 | 52 | eqeq1i 2741 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑋) · 𝑋) = 𝑍 ↔ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍) |
| 54 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝑓‘𝑋) → (𝑠 · 𝑋) = ((𝑓‘𝑋) · 𝑋)) |
| 55 | 54 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓‘𝑋) · 𝑋) = 𝑍)) |
| 56 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑋) → (𝑠 = 0 ↔ (𝑓‘𝑋) = 0 )) |
| 57 | 55, 56 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑓‘𝑋) → (((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ (((𝑓‘𝑋) · 𝑋) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 58 | 57 | rspcva 3604 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑋) ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (((𝑓‘𝑋) · 𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
| 59 | 53, 58 | biimtrrid 243 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑋) ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
| 60 | 59 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑋) ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 61 | 28, 50, 60 | syl56 36 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (𝑓 ∈ (𝑆 ↑m {𝑋}) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )))) |
| 62 | 61 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (𝑓 ∈ (𝑆 ↑m {𝑋}) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )))) |
| 63 | 62 | imp31 417 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
| 64 | 47, 63 | sylbid 240 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍 → (𝑓‘𝑋) = 0 )) |
| 65 | 64 | adantld 490 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍) → (𝑓‘𝑋) = 0 )) |
| 66 | 23, 65 | sylbid 240 |
. . . . . . 7
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 )) |
| 67 | 66 | ralrimiva 3133 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 )) |
| 68 | 67 | ex 412 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ))) |
| 69 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 70 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓:{𝑋}⟶𝑆) |
| 71 | | snfi 9062 |
. . . . . . . . . . 11
⊢ {𝑋} ∈ Fin |
| 72 | 71 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → {𝑋} ∈ Fin) |
| 73 | | snlindsntor.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
| 74 | 73 | fvexi 6895 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 0 ∈ V) |
| 76 | 70, 72, 75 | fdmfifsupp 9392 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓 finSupp 0 ) |
| 77 | | pm2.27 42 |
. . . . . . . . 9
⊢ (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 78 | 76, 77 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 79 | 69, 78 | biimtrid 242 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 80 | 79 | ralimdva 3153 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
| 81 | | snlindsntor.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
| 82 | 17, 9, 8, 73, 81, 51 | snlindsntorlem 48413 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| 83 | 80, 82 | syld 47 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
| 84 | 68, 83 | impbid 212 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ))) |
| 85 | | fveqeq2 6890 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
| 86 | 85 | ralsng 4656 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
| 87 | 86 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
| 88 | 87 | bicomd 223 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((𝑓‘𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )) |
| 89 | 88 | imbi2d 340 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ))) |
| 90 | 89 | ralbidv 3164 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ))) |
| 91 | | snelpwi 5423 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ 𝒫 𝐵) |
| 92 | 91 | adantl 481 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → {𝑋} ∈ 𝒫 𝐵) |
| 93 | 92 | biantrurd 532 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
| 94 | 84, 90, 93 | 3bitrd 305 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
| 95 | 4, 94 | bitrid 283 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
| 96 | | snex 5411 |
. . 3
⊢ {𝑋} ∈ V |
| 97 | 17, 81, 9, 8, 73 | islininds 48389 |
. . 3
⊢ (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
| 98 | 96, 5, 97 | sylancr 587 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
| 99 | 95, 98 | bitr4d 282 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) |