Step | Hyp | Ref
| Expression |
1 | | df-ne 2943 |
. . . . 5
⊢ ((𝑠 · 𝑋) ≠ 𝑍 ↔ ¬ (𝑠 · 𝑋) = 𝑍) |
2 | 1 | ralbii 3090 |
. . . 4
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ (𝑆 ∖ { 0 }) ¬ (𝑠 · 𝑋) = 𝑍) |
3 | | raldifsni 4725 |
. . . 4
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 }) ¬
(𝑠 · 𝑋) = 𝑍 ↔ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) |
4 | 2, 3 | bitri 274 |
. . 3
⊢
(∀𝑠 ∈
(𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) |
5 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑀 ∈ LMod) |
6 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → 𝑀 ∈ LMod) |
7 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑀 ∈ LMod) |
8 | | snlindsntor.s |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = (Base‘𝑅) |
9 | | snlindsntor.r |
. . . . . . . . . . . . . . . . 17
⊢ 𝑅 = (Scalar‘𝑀) |
10 | 9 | fveq2i 6759 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
11 | 8, 10 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 =
(Base‘(Scalar‘𝑀)) |
12 | 11 | oveq1i 7265 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ↑m {𝑋}) =
((Base‘(Scalar‘𝑀)) ↑m {𝑋}) |
13 | 12 | eleq2i 2830 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) ↔ 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
14 | 13 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
15 | 14 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑋})) |
16 | | snelpwi 5354 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ (Base‘𝑀) → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
17 | | snlindsntor.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑀) |
18 | 16, 17 | eleq2s 2857 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
19 | 18 | ad3antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → {𝑋} ∈ 𝒫 (Base‘𝑀)) |
20 | | lincval 45638 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑m {𝑋}) ∧ {𝑋} ∈ 𝒫 (Base‘𝑀)) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
21 | 7, 15, 19, 20 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (𝑓( linC ‘𝑀){𝑋}) = (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
22 | 21 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍)) |
23 | 22 | anbi2d 628 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) ↔ (𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍))) |
24 | | lmodgrp 20045 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
25 | 24 | grpmndd 18504 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
26 | 25 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑀 ∈ Mnd) |
27 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑋 ∈ 𝐵) |
28 | | elmapi 8595 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → 𝑓:{𝑋}⟶𝑆) |
29 | 6 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → 𝑀 ∈ LMod) |
30 | | snidg 4592 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋}) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {𝑋}) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → 𝑋 ∈ {𝑋}) |
33 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ 𝑋 ∈ {𝑋}) → (𝑓‘𝑋) ∈ 𝑆) |
34 | 32, 33 | sylan2 592 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → (𝑓‘𝑋) ∈ 𝑆) |
35 | | simprlr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → 𝑋 ∈ 𝐵) |
36 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
37 | 17, 9, 36, 8 | lmodvscl 20055 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑋) ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
38 | 29, 34, 35, 37 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
39 | 38 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (𝑓:{𝑋}⟶𝑆 → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵)) |
40 | 28, 39 | syl5com 31 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑆 ↑m {𝑋}) → (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵)) |
41 | 40 | impcom 407 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
42 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (𝑓‘𝑥) = (𝑓‘𝑋)) |
43 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
44 | 42, 43 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
45 | 17, 44 | gsumsn 19470 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
46 | 26, 27, 41, 45 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
47 | 46 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍 ↔ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍)) |
48 | 30, 33 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:{𝑋}⟶𝑆 ∧ 𝑋 ∈ 𝐵) → (𝑓‘𝑋) ∈ 𝑆) |
49 | 48 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐵 → (𝑓:{𝑋}⟶𝑆 → (𝑓‘𝑋) ∈ 𝑆)) |
50 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (𝑓:{𝑋}⟶𝑆 → (𝑓‘𝑋) ∈ 𝑆)) |
51 | | snlindsntor.t |
. . . . . . . . . . . . . . . . 17
⊢ · = (
·𝑠 ‘𝑀) |
52 | 51 | oveqi 7268 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑋) · 𝑋) = ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) |
53 | 52 | eqeq1i 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑋) · 𝑋) = 𝑍 ↔ ((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍) |
54 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝑓‘𝑋) → (𝑠 · 𝑋) = ((𝑓‘𝑋) · 𝑋)) |
55 | 54 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑋) → ((𝑠 · 𝑋) = 𝑍 ↔ ((𝑓‘𝑋) · 𝑋) = 𝑍)) |
56 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑋) → (𝑠 = 0 ↔ (𝑓‘𝑋) = 0 )) |
57 | 55, 56 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑓‘𝑋) → (((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ (((𝑓‘𝑋) · 𝑋) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
58 | 57 | rspcva 3550 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑋) ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (((𝑓‘𝑋) · 𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
59 | 53, 58 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑋) ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
60 | 59 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑋) ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
61 | 28, 50, 60 | syl56 36 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (𝑓 ∈ (𝑆 ↑m {𝑋}) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )))) |
62 | 61 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → (𝑓 ∈ (𝑆 ↑m {𝑋}) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )))) |
63 | 62 | imp31 417 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (((𝑓‘𝑋)( ·𝑠
‘𝑀)𝑋) = 𝑍 → (𝑓‘𝑋) = 0 )) |
64 | 47, 63 | sylbid 239 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍 → (𝑓‘𝑋) = 0 )) |
65 | 64 | adantld 490 |
. . . . . . . 8
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑀 Σg (𝑥 ∈ {𝑋} ↦ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) = 𝑍) → (𝑓‘𝑋) = 0 )) |
66 | 23, 65 | sylbid 239 |
. . . . . . 7
⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 )) |
67 | 66 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 )) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 )) |
68 | 67 | ex 412 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ))) |
69 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ (𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
70 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓:{𝑋}⟶𝑆) |
71 | | snfi 8788 |
. . . . . . . . . . 11
⊢ {𝑋} ∈ Fin |
72 | 71 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → {𝑋} ∈ Fin) |
73 | | snlindsntor.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
74 | 73 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 0 ∈ V) |
76 | 70, 72, 75 | fdmfifsupp 9068 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → 𝑓 finSupp 0 ) |
77 | | pm2.27 42 |
. . . . . . . . 9
⊢ (𝑓 finSupp 0 → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
78 | 76, 77 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → ((𝑓 finSupp 0 → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 )) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
79 | 69, 78 | syl5bi 241 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑓 ∈ (𝑆 ↑m {𝑋})) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
80 | 79 | ralimdva 3102 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ))) |
81 | | snlindsntor.z |
. . . . . . 7
⊢ 𝑍 = (0g‘𝑀) |
82 | 17, 9, 8, 73, 81, 51 | snlindsntorlem 45699 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
83 | 80, 82 | syld 47 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
84 | 68, 83 | impbid 211 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ))) |
85 | | fveqeq2 6765 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
86 | 85 | ralsng 4606 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
87 | 86 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ↔ (𝑓‘𝑋) = 0 )) |
88 | 87 | bicomd 222 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((𝑓‘𝑋) = 0 ↔ ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )) |
89 | 88 | imbi2d 340 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ))) |
90 | 89 | ralbidv 3120 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → (𝑓‘𝑋) = 0 ) ↔ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ))) |
91 | | snelpwi 5354 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ 𝒫 𝐵) |
92 | 91 | adantl 481 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → {𝑋} ∈ 𝒫 𝐵) |
93 | 92 | biantrurd 532 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
94 | 84, 90, 93 | 3bitrd 304 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ) ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
95 | 4, 94 | syl5bb 282 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
96 | | snex 5349 |
. . 3
⊢ {𝑋} ∈ V |
97 | 17, 81, 9, 8, 73 | islininds 45675 |
. . 3
⊢ (({𝑋} ∈ V ∧ 𝑀 ∈ LMod) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
98 | 96, 5, 97 | sylancr 586 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ({𝑋} linIndS 𝑀 ↔ ({𝑋} ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀){𝑋}) = 𝑍) → ∀𝑦 ∈ {𝑋} (𝑓‘𝑦) = 0 )))) |
99 | 95, 98 | bitr4d 281 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) |