MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifsn Structured version   Visualization version   GIF version

Theorem rexdifsn 4727
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 4720 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21anbi1i 624 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
3 anass 469 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
42, 3bitri 274 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
54rexbii2 3179 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rex 3070  df-v 3434  df-dif 3890  df-sn 4562
This theorem is referenced by:  symgfix2  19024  usgr2pth0  28133  wspniunwspnon  28288  dihatexv  39352  lcfl8b  39518
  Copyright terms: Public domain W3C validator