MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifsn Structured version   Visualization version   GIF version

Theorem rexdifsn 4799
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 4792 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
21anbi1i 622 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
3 anass 467 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
42, 3bitri 274 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
54rexbii2 3079 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098  wne 2929  wrex 3059  cdif 3941  {csn 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-rex 3060  df-v 3463  df-dif 3947  df-sn 4631
This theorem is referenced by:  symgfix2  19383  usgr2pth0  29651  wspniunwspnon  29806  dihatexv  40941  lcfl8b  41107
  Copyright terms: Public domain W3C validator