![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexdifsn | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
rexdifsn | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4791 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | 1 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) ∧ 𝜑)) |
3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝜑))) |
5 | 4 | rexbii2 3088 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∖ cdif 3960 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rex 3069 df-v 3480 df-dif 3966 df-sn 4632 |
This theorem is referenced by: symgfix2 19449 usgr2pth0 29798 wspniunwspnon 29953 dihatexv 41321 lcfl8b 41487 |
Copyright terms: Public domain | W3C validator |