| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexdifsn | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| rexdifsn | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4767 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
| 2 | 1 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) ∧ 𝜑)) |
| 3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝜑))) |
| 5 | 4 | rexbii2 3080 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rex 3062 df-v 3466 df-dif 3934 df-sn 4607 |
| This theorem is referenced by: symgfix2 19402 usgr2pth0 29752 wspniunwspnon 29910 dihatexv 41362 lcfl8b 41528 |
| Copyright terms: Public domain | W3C validator |